

Seasonal Terrain Texture Synthesis via Köppen Periodic Conditioning

<u>**Toshiki Kanai</u>** Yuki Endo Yoshihiro Kanamori University of Tsukuba</u>

- Wide range of earth landscapes due to terrain, climate and seasons
 - Benefits for content creation if it can be reproduced in CG

Terrain landscapes

• Terrain landscapes can be represented by textures and heightfields

• Terrain landscapes can be represented by textures and heightfields

• Terrain landscapes can be represented by textures and heightfields

Our Goal

• Synthesizing seasonal transition of terrain textures.

Terrain textures

No prior studies on season-controllable terrain texture synthesis

Our Goal

• Synthesizing seasonal transition of terrain textures

Our result: textured 3D terrain model with seasonal transition

Related Work (1/2)

• Generating terrain heightfields & textures via deep learning [Spick+, 2019]

Cannot account for climatic or seasonal changes

• Synthesizing satellite images from label maps [Zhu+, 2021]

Related Work (2/2)

- Image-to-image translation using reference images [Park+, 2020]
 - Can change the season of the image

Requires input & reference images

What Affects Terrain Appearance?

- Primary factors: Vegetation and snow cover
 - Causes appearance differences by climate and seasons
- Vegetation: Köppen climate classification focuses on vegetation differences
 - Classifies by temperature and precipitation per month of the year
 - Temperature and precipitation also affect snow cover
- Snow cover: Also affected by heightfield and insolation
 - Heightfield: Snow accumulates at higher elevations
 - Isolation: Snow melts faster on slopes exposed to direct sunlight

Affecting factors: temperature, precipitation, heightfield, and insolation

How Can We Control Seasons?

- Ground surface conditions are also affected by seasons; how to control?
- Naïve season control: indexing by month
 - e.g., month index = 8 (Aug.) \rightarrow summer, month index = 12 (Dec.) \rightarrow winter

Our Challenge

• Design of a seasonal control method without explicit temporal information

• Specifies which month's texture is synthesized according to input order of monthly data

To synthesize a texture for month *m*, we sort input *s.t.* each map of month *m* comes first

• Specifies which month's texture is synthesized according to input order of monthly data

• Specifies which month's texture is synthesized according to input order of monthly data

• Specifies which month's texture is synthesized according to input order of monthly data

Latent-Space Texture Interpolation

- Plausibly interpolate textures between two consequtive months in latent space
 - Utilize the latent space of the SPADE architecture [Park+, 2019] (see our paper)

CGI2024

Dataset

- Heightfield, temperature, precipitation, and terrain texture
 - Build a dataset based on actual measurements using Google Earth Engine

	Data source
Heightfield	NASADEM
Temperature	EDAE Land
Precipitation	ERAJ-Lanu
Terrain texture	satellite images of the Sentinel-2 (spatial resolution: 10m)

• Insolation maps: calculated from heightfield and latitude by ray casting

Experimental Setting

- Compared the following input conditions as an ablation study
 - Heightfield was used as input for all conditions

Condition	input
(1) T' ₁₂ + P' ₁₂ + M	Temperature (T $'_{12}$) and precipitation (P $'_{12}$) for one year and month (M)
(2) T ₁ + P ₁	Temperature (T_1) and precipitation (P_1) for one month
(3) L + M	Latitude (L) and month (M)
(4) T ₁₂ + P ₁₂	Periodically-rotated temperature (T_{12}) and precipitation (P_{12}) for one year
Ours (T ₁₂ + P ₁₂ + S ₁₂)	Periodically-rotated temperature (T_{12}), precipitation (P_{12}) and insolation (S_{12}) for one year

- Used five evaluation metrics
 - Best scores are highlighted in red

Condition	RMSE↓	SSIM ↑	LPIPS↓	∂AD↓	ðssim↓
(1) T' ₁₂ + P' ₁₂ + M	64.3	0.57	0.47	123.3	0.13
(2) T ₁ + P ₁	75.7	0.52	0.49	124.8	0.16
(3) L + M	66.8	0.55	0.46	116.9	0.14
(4) T ₁₂ + P ₁₂	61.1	0.52	0.44	120.8	0.11
Ours (T ₁₂ + P ₁₂ + S ₁₂)	59.3	0.52	0.44	123.3	0.11

- Used five evaluation metrics
 - Best scores are highlighted in red

- Used five evaluation metrics
 - Best scores are highlighted in red

Condition	RMSE↓	SSIM ↑	LPIPS↓	¢dA6	JSSIM↓
(1) T' ₁₂ + P' ₁₂ + M	64 3	0.57	0.47	123.3	0.13
(2) T ₁ + P ₁	For the accu	exture	0.16		
(3) L + M	66.8	0.55	0.46	116.9	0.14
(4) T ₁₂ + P ₁₂	61.1	0.52	0.44	120.8	0.11
Ours (T ₁₂ + P ₁₂ + S ₁₂	₂) 59.3	0.52	0.44	123.3	0.11

- Used five evaluation metrics
 - Best scores are highlighted in red

Condition	RMSE↓	SSIM ↑	LPIPS↓	¢AD↓	∂SSIM↓
(1) T' ₁₂ + P' ₁₂ + M	64.3	0.57	0.47	123.3	0.13
(2) T ₁ + P ₁	75.7	0.52	0.49	124.8	0.16
(3) L + M	66.8	0.55	0.46	116.9	0.14
(4) T ₁₂ + P ₁₂	61.1	0.52	0.44	120.8	0.11
Ours (T ₁₂ + P ₁₂ + S ₁₂)	59.3	0.52	0.44	123.3	0.11

Ours" was best in most metrics

• Compared with the conditions **WITHOUT** 12-month input

• Compared with the conditions **WITHOUT** 12-month input

• Compared with the conditions **WITHOUT** 12-month input

• Compared with the conditions **WITH** 12-month input

• Validation of the insolation maps

• Validation of the insolation maps

Conclusion

- First method to synthesize seasonal transition of terrain textures
 - Seasons are controlled by the input order of monthly temperature, precipitation, and insolation maps of one year
 - Monthly temperature and precipitation are essential to reflect seasons
 - Monthly insolation maps are useful for snow reproduction
- Continuous seasonal changes via latent-space interpolation

Thank You for Your Attention CGI2024

Please visit our project page!

https://www.cgg.cs.tsukuba.ac.jp/~tossy/pub/seasonal_terrain_texture/

