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Figure 1. Results of editing the pose and body shape of a fullbody human image using our method. For various pose and body shape inputs,
our method can generate realistic human images, while preserving the clothing textures and facial identity of reference person images.

Abstract

Pose and body shape editing in a human image has re-
ceived increasing attention. However, current methods of-
ten struggle with dataset biases and deteriorate realism
and the person’s identity when users make large edits. We
propose a one-shot approach that enables large edits with
identity preservation. To enable large edits, we fit a 3D
body model, project the input image onto the 3D model,
and change the body’s pose and shape. Because this ini-
tial textured body model has artifacts due to occlusion and
the inaccurate body shape, the rendered image undergoes a
diffusion-based refinement, in which strong noise destroys
body structure and identity whereas insufficient noise does
not help. We thus propose an iterative refinement with weak
noise, applied first for the whole body and then for the face.
We further enhance the realism by fine-tuning text embed-
dings via self-supervised learning. Our quantitative and
qualitative evaluations demonstrate that our method out-
performs other existing methods across various datasets.
https://github.com/yutaockuyama/DiffBody

1. Introduction

Editing the pose and body shape of a human image
is a task to change the orientation, position, and slender-
ness/fatness of the subject’s limbs and torso, and outputs
a realistic image of the same person. This task has been
actively studied due to its potential applications, such as
visual simulation after dieting and efficient fashion photo
shooting.

Recent techniques for editing pose and shape in a human
image can be broadly categorized into two approaches, i.e.,
1) the approach based on image warping and generative ad-
versarial networks (GANs) and 2) the diffusion-based ap-
proach [4]. The former approach utilizes image warping
and well preserves the person’s identity, but it often causes
artifacts with large edits (see Figures 9 and 10). The lat-
ter approach yields high-quality output images with diverse
poses and shapes thanks to the diffusion models. How-
ever, it often struggles with identity preservation; the output
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Figure 2. Limitations of the state-of-the-art methods for human
pose editing by Ren et al. [31] and Bhunia et al. [4]. These meth-
ods often struggle with identity preservation for input images not
observed in a test set corresponding to a training set (see the red
boxes).

human figures tend to have different clothes or faces from
those of the input image (see Figure 2).

In this paper, we propose a method to enable large ed-
its for various poses and shapes in a single human image
with identity preservation. Our large edit for poses and
shapes is driven by a 3D parametric body model, followed
by refinement using a diffusion model. Namely, we fit a
3D parametric body model [26] to the reference human im-
age, project the reference image onto the 3D model, and
change the pose and shape parameters to obtain a textured
human model with a new pose and shape. This initial tex-
tured model often has artifacts (see Figure 3) because it ex-
hibits occluded regions that were not visible in the reference
image, and the target body shape of the texture projection is
often inaccurate. We thus refine the rendered human image
using an image-to-image translation technique with a diffu-
sion model [22]. However, a critical pitfall lies in the diffi-
culty of the noise strength control in the diffusion model; in-
sufficient noise strength does not refine the visual artifacts,
whereas excessively strong noise will significantly alter the
person’s identity (see Figure 4).

To improve the visual artifacts while avoiding significant
structural changes, we propose an iterative refinement with
weak noise. Furthermore, to enhance the quality of refine-
ments, we update text embeddings used for network condi-
tioning during iterative refinements through self-supervised
learning. Building upon these refinement processes, we
adopt a staged pipeline in which we first refine the full-
body image and then locally refine facial features to en-
hance realism. We quantitatively and qualitatively evalu-
ate our method, demonstrating superior results compared to
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Figure 3. Problem of person image projection onto 3D parametric
body models. As shown in the red boxes, the initial textured model
often has artifacts when its pose and shape are edited.
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Figure 4. Refinement results of a textured model using a diffusion
model with different noise strengths. Insufficient noise strength
does not refine the visual artifacts, whereas excessively strong
noise will significantly alter the person’s identity.

existing methods across various datasets.

2. Related work

Image-to-image translation. To synthesize human im-
ages according to specified poses, an early attempt based on
image-to-image translation adopted a generative adversar-
ial network (GAN) conditioned on keypoints [21]. Another
attempt used a U-Net architecture combined with a varia-
tional autoencoder (VAE) [8]. However, these approaches
cannot handle large deformation because they struggle to
handle feature misalignment between input and output im-
ages with different poses. Some methods enable more flex-
ible pose editing by using flow fields [11, 15, 20, 32], 2D
UV maps of human bodies (i.e., DensePose) [1,25], or hu-
man parsing maps [19, 44, 49]. In addition, the attention
mechanism [39] further improved the quality of generated



images by efficiently and extensively capturing image fea-
tures [14,31,36,46,50]. Recently, PIDM [4] used a diffusion
model for pose editing and achieved state-of-the-art results
thanks to its capability of image generation. These existing
methods yield satisfactory results for a test set correspond-
ing to a training set. However, for diverse human images
outside the dataset, they often cause discrepancies between
a generated person and a reference person in facial identity
and clothing textures, resulting in limiting their applicabil-
ity to in-the-wild data. In contrast, our method performs
well for diverse inputs by refining textured 3D human mod-
els using general text-to-image diffusion models finetuned
for a reference person image.

Image warping. Several pose editing methods perform
image warping based on 3D human models to improve gen-
eralizability for diverse human images [16, 35,42]. These
methods first fit a 3D human model [26] to a reference per-
son image. Then, the reference person image is projected
onto the fitted 3D human model, whose pose is edited to
obtain a final image with the desired pose. These meth-
ods inpaint invisible regions in reference images by using
flow fields [16], GANSs [42], or diffusion models [35]. How-
ever, these methods still struggle to handle invisible regions
and sometimes yield highly distorted textures. Instead of
directly inpainting invisible regions, our method extends
an image-to-image translation technique using a diffusion
model [22] to refine projected textures. Our iterative refine-
ment approach enables us to generate more plausible tex-
tures in invisible regions.

Text-to-image translation. There have also been ap-
proaches utilizing large-scale language models and diffu-
sion models for synthesizing person images from text and
pose information [24,45]. Combining these methods with
DreamBooth [34], which finetunes diffusion models with
several reference images, enables pose editing of a specific
person in a reference image. The benefits of large-scale lan-
guage models and diffusion models allow us to generate re-
alistic human images with diverse poses. However, preserv-
ing the facial identity and clothing textures of the reference
images remains challenging in this approach.

Body shape editing. Zhou et al. [48] proposed the first
method for body shape editing using 3D human models.
In this method, the user interactively fits a 3D parametric
body model, SCAPE [2], to an input fullbody image. Then,
after editing the body shape of the 3D model by specify-
ing height and weight parameters, the user can obtain out-
put images deformed via image warping based on the 3D
model. MovieReshape [48] automated the fitting of SCAPE
models by taking a video as input. FBBR [30] is a method
that directly applies image warping based on 2D flow field

Poisson
Blending

B rullbody

U O

refinement

SMPL-X : Pose & Shape

Edited SMPL-X
height : 180cm)|
weight : 72kg

Reference

I
Body
measurement

Pose

Figure 5. Overview of our method. Our method first computes
a textured SMPL-X model from a reference person image. The
SMPL-X model is then deformed according to given body pose,
height, and weight parameters. To compensate for occluded and
distorted textures resulting from texture projection, our method
performs step-by-step refinement for the rendered image of the
SMPL-X model using diffusion models.

to an input human image. The user can specify a positive
or negative value indicating the amount of deformation, and
the CNN estimates a flow field for the input reference per-
son image. However, it yields significant distortion when
extensively editing body shapes. In our method, we per-
form image deformation based on 3D human models, while
locally refining the invisible and distorted regions of the de-
formed images using diffusion models. This allows large
deformation with less distortion.

3. Method

Figure 5 shows an overview of our method. We first re-
construct a 3D human model from a reference image and
then improve its appearance via diffusion-based refinement.
The reconstruction procedure of 3D human models is as fol-
lows. We first fit SMPL-X [26], which is a 3D parametric
body model, to a reference image. Next, we obtain a texture
of the SMPL-X model by projecting the reference image.
We then specify body shape parameters (height and weight)
and keypoints (joint positions) to manipulate the pose and
body shape of the SMPL-X model. Finally, we obtain a
coarse human image by rendering the textured SMPL-X
model.

Although the rendered image of a textured SMPL-X
can reflect a specified pose and body shape (see Figure 3),
it contains visual artifacts due to invisible areas and tex-
ture distortion. Therefore, we aim to reduce such artifacts
by leveraging diffusion models, which are equipped with
highly-expressive generative capability and local editability.
We use the pre-trained latent diffusion model (LDM) [33] as
a backbone of our method. To faithfully preserve a person’s
identity, we use DreamBooth [34]. Specifically, we fine-
tune the LDM using a body image and a face image cropped
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Figure 6. Overview of our refinement module. This module is
based on an image-to-image translation technique using a diffu-
sion model [22]. It first adds noise to the latent map computed
from an input image using the VAE. Then, the diffusion model de-
noises the noised maps using a refinement mask and conditioning
vector extracted from a prompt and keypoints. The final output
image is obtained from the denoised latent map using the VAE.

from a reference image. As a textual input of DreamBooth,
we use a prompt containing a special token “sks” associ-
ated with the reference person (see Figure 5). We also con-
dition the LDM on keypoints of joint positions using T2I-
Adapter [24] to reflect pose information effectively.

Using the finetuned diffusion model conditioned on a
text prompt and keypoints, we refine a textured SMPL-X
image. To do so, inspired by SDEdit [22], we perform
image-to-image translation that can modify fine details of
an input image while preserving its coarse structure via for-
ward (noising) and reverse (denoising) processes. However,
simply using SDEdit unnecessarily changes textures in vis-
ible areas while not sufficiently modifying visual artifacts
in invisible and distorted regions. This is because textures
in each area should be modified with different noise lev-
els, but SDEdit uniformly adds noise to an entire image and
performs denoising. To address this issue, we propose two-
stage refinement steps, which modify each part with differ-
ent noise levels. The first step is for refining fullbody tex-
tures in invisible areas, whereas the second step is for facial
distorted textures. We describe these steps in the following
sections.

3.1. Step 1: Fullbody refinement

In Step 1, we introduce a refinement module (Figure 6)
for correcting unnatural textures in invisible areas caused by
the projection of reference images. The refinement module
takes as input an image to be modified, a refinement mask
for invisible areas, a conditioning vector extracted from a
prompt and keypoints. The input image is converted into a
latent feature map using the VAE encoder of the LDM. In-
spired by Blended Diffusion [3], we perform denoising in
the refinement mask to modify only invisible areas. Specif-
ically, we first add noise to the latent feature map through
the forward process and store the noise map at each time
step. Then, during the reverse process, we perform denois-
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Figure 7. Overview of fullbody refinement in Step 1. The body
refinement block (BRB) iteratively refines the invisible area of a
textured SMPL-X model using our refinement module. At each
refinement iteration, it also updates the text embedding epoqy us-
ing the CLIP and AW losses. The process of BRB is also repeated
while reinitializing the refined image to make the update of the
text embedding stable.

ing while replacing the values outside the refinement mask
with the noise map stored at the corresponding time step.
However, in this process, excessively strong noise unneces-
sarily modifies human coarse structure, whereas weak noise
cannot improve fine texture details sufficiently. In addition,
the appropriate noise strength depends on input images, but
adjusting individual noise strengths is cumbersome.

Iterative refinement. To adequately modify fine texture
details while preserving coarse structure, our method iter-
atively refines images via multiple reverse processes with
weak noise. As illustrated in Figure 7, we iterate the process
that adds weak noise to an input image and performs denois-
ing using the refinement module. During the iteration, we
need to determine how many iterations are the best to ob-
tain a high-quality output. This optimal iteration number is
determined based on loss functions for evaluating the out-
put image. We first use the Adaptive Wing (AW) loss [40]
between joint heatmaps estimated by OpenPose [5] for the
output image and the rendered SMPL-X image. In addi-
tion, we use CLIP similarity [29] between the output and
reference images for each part [10] based on SMPL-X la-
beling. The final output is obtained when the sum of these
loss functions become minimum during fixed iterations.

Text embedding optimization. In parallel with iterative
refinement, we also aim to further improve the visual qual-
ity of the final output by optimizing the text embedding
€pody conditioned on the network. At each iteration, we
update the text embedding ey,q, via backpropagation of the
above loss functions.
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Figure 8. Overview of facial refinement in Step 2. The face refine-
ment block (FRB) refines distorted facial textures in the output of
Step 1. Similar to Step 1, we perform iterative refinement using
our refinement module. The text embedding e .. is also updated
according to the ID, CLIP, and Keypoint losses.

Input reinitialization. However, we often observed cases
where the refined image becomes unnatural during itera-
tive refinement before the text embedding optimization con-
verges. As a result, the text embedding may also converge
to an undesirable solution. To address this issue, we reini-
tialize the input image with the initial image every several
iterations in iterative refinement. This approach makes text
embedding optimization more stable and allows us to ob-
tain higher-quality results, as shown in the ablation study in
Section 4.3.

While this fullbody refinement process can improve the
invisible areas of rendered SMPL-X images, unnatural dis-
tortions are still observed in face textures, which are further
refined in Step 2.

3.2. Step 2: Facial refinement

Figure 8 shows an overview of Step 2. According to
region labels obtained by SMPL-X [26], we automatically
crop a facial region from the image refined in Step 1. Af-
ter resizing the cropped image to 512 x 512, our refinement
module iteratively updates the image and text embedding
€fqce in a similar procedure to Step 1. To seamlessly merge
face and body images after refinement, we keep the outer re-
gion of the face image unchanged by assigning O to the outer
region of the refinement mask and 1 to the inner region. To
optimize the text embedding e .., we use the identity loss
by MagFace [23], keypoint loss defined by MSE loss be-
tween keypoints of output and rendered SMPL-X images
estimated using RetinaFace [7], and CLIP similarity [29].
We obtain a final output in Step 2 when the sum of these
loss functions shows a minimum value during fixed itera-
tions. The final result is generated by merging the output
images in Steps 1 and 2 via Poisson blending [27].

4. Experiments

Datasets. We used various datasets such as DeepFash-
ion [17], MonoPerfCap [41], Everybody Dance Now
(EDN) [6], YouTube 18 Dancers [13], and EHF [26]. From
DeepFashion, we extracted 80 images containing fullbody
humans and used 26 images as reference person images and
54 images as target poses. For the other datasets containing
videos of different people, we used a single frame of each
video as a reference and about 35 frames of each video as
targets. In total, we used 51 reference images and 963 target
images.

Evaluation metrics. We evaluated our method using the
metrics including SSIM, PSNR, LPIPS [47], FID [9], and
the AW and ID losses. For the AW loss, we employed the
L2 loss between heatmaps estimated from generated and
target images using OpenPose [5]. For the ID loss, we used
the cosine similarity between facial features obtained using
MagFace [23].

Implementation details. We implemented our method us-
ing Python and PyTorch and ran our program on NVIDIA
RTX A6000. The image size used in the experiments was
512 x 512. In our method, we finetuned a pre-trained Sta-
ble Diffusion (v1.4) [33] with a single reference image for
each person using DreamBooth [34]. During the finetuning
process, we used the AdamW optimizer with a learning rate
of 1.0 x 10~%. For inference, we used 30% noise for image
refinement in Steps 1 and 2 and performed 100 iterations of
refinement. For input reinitialization, which aims to make
text embedding optimization stable, we reinitialize the in-
put image every 5 iterations in iterative refinement. For text
embedding optimization, we used the Adam optimizer [12]
and the cosine annealing scheduler [18] with warmup, with
minimum and maximum learning rates set to 4.0 x 1074
and 5.0 x 1074, respectively. We used PyMaF [43] to esti-
mate SMPL-X parameters. Our method took about 20 min-
utes for each finetuning and inference. The resulting images
shown in our paper are trimmed to save space. See our sup-
plementary material for more implementation details and
additional results.

4.1. Evaluation of pose editing

Quantitative comparison. Regarding pose editing,
we compared our method with the existing methods in-
cluding LWG [16], PGHA [42], NTED [31], PIDM [4],
T2IA [24], and DINAR [35]. For T2IA, we finetuned the
pre-trained diffusion model equipped with the T2I adapter
using DreamBooth for each reference person image. For
LWG, PGHA, and DINAR, we used official models trained
on the iPER [16], 3D People [28], or Texel [38] dataset.
For the remaining methods, we used official models trained
on the DeepFashion dataset [17]. Table 1 shows the quan-
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Figure 9. Qualitative comparison of editing the reference images to the target poses with our method and the existing methods (LWG [16],

PGHA [42], DINAR [35], NTED [31], PIDM [4], and T2IA [24]) on each dataset.

titative comparison on various datasets. The bold font in- shown in the results, our method outperforms the existing
dicates the best score for each metric on each dataset. As methods in almost all metrics on the four datasets (i.e., Ev-



Table 1. Quantitative comparison on the Everybody Dance Now
(EDN) [6], EHF [26], MonoPerfCap [41], YouTube 18 Dancers
(Y18D) [13], DeepFashion [17] datasets, and average scores
across all datasets.

[PSNRT SSIMf LPIPS] FID]  ID] AW}

LWG [16] 17.000  0.751 0.251 48322 0352 7.70
PGHA [42] 16.219  0.745 0.304 90.952  0.408 6.22
©  DINAR[35] | 15398 0.725 0.276 52515 0.308 6.78
Z  NTED [31] 16.153  0.742 0.292 90.843  0.480 5.92
E} PIDM [4] 14.928  0.680 0.320  108.288 0.487 8.76
T2IA [24] 5.027 0.400 0.627  229.689 0.454 3.90
Ours 18.574  0.793 0.212 44.801 0.276  3.30
LWG [16] 18.994  0.788 0.232 68.922  0.210 3.20
_ PGHA[42] 17.763  0.764 0.289  124.662 0389 275
& DINAR([35] | 17332 0.744 0.286 87.227 0.333 289
o NTED [31] 17.564  0.751 0.323  285.534 0473 231
E PIDM [4] 15.125  0.681 0.379 279378 0.490 3.28
T2IA [24] 6.062 0.546 0.567 238.12 0.382 293
Ours 20.356  0.815 0.216 58.887 0.180 1.62
= LWGII6] 19.133  0.696 0.269 41.500 0.268 4.17
< PGHA [42] 17.849  0.670 0.339 88.296  0.400 4.13
g DINAR [35] | 17.104  0.651 0.313 53.149 0.278 6.68
§ NTED[31] 18.064  0.662 0.318 80.670  0.476 2.23
% PIDM [4] 16.547  0.649 0.350 92.661 0476 4.78
g T20A[24] 5.133 0.382 0.621  219.755 0424 3.10
= Ours 19.720  0.716 0.242 46.432 0175 1.82
LWG [16] 17.000  0.701 0.285 52927 0.328 4.30
— PGHA [42] 16.583  0.689 0.328  107.667 0.393  4.65
E DINAR [35] | 15796  0.672 0.311 65.441 0.326 6,52
2 NTED [31] 16.651  0.683 0.324 91.852 0.485 2.70
= PIDM [4] 15.676  0.659 0.341 102.664 0.459  4.57
T2IA [24] 5.057 0.391 0.644 213486 0422 4.07
Ours 18.048  0.731 0.254 52.170  0.283  2.54
= LWGI[le6] 15.652  0.633 0.405  123.687 0.403 14.22
= PGHA [42] 14.939  0.621 0450 180599 0.533 11.29
E DINAR [35] | 14.975  0.640 0.419 115243 0.345 11.04
§ NTED [31] 16.846  0.665 0.353 76.561 0.322  3.39
%, PIDM [4] 15.854  0.665 0.383 78.285 0407 558
8 T2IA[24] 5.049 0.380 0.634  225.615 0.517 822
2 Ours 15738 0.642 0.376 98.572  0.296 7.13
LWG [16] 17.556  0.714 0.289 67.072 0.312 6.72
PGHA [42] 16.671  0.698 0.342 118435 0425 581
Eﬁ DINAR [35] | 16.121  0.686 0.321 74715 0.318 6.78
§ NTED [31] 17.064  0.701 0.322 125362 0.447 3.31
< PIDM [4] 15.626  0.667 0.351  132.255 0464 539
T2IA [24] 5.266 0.420 0.619 225333 0440 4.44
Ours 18.487  0.739 0.260 60.171 0.242 3.28

erybody Dance Now, EHF, MonoPerfCap, and YouTube 18
Dancers). In the results on DeepFashion, although NTED
performs the best, our method also outperforms the methods
not trained on the DeepFashion dataset. Furthermore, our
method shows the best average scores across all datasets.
These findings suggest that our method works across multi-
ple datasets.

Qualitative comparison.  Figure 9 shows the qualita-
tive comparison of pose editing on various datasets. In
the results of the first and second rows, the warping-based
methods such as LWG [16], PGHA [42], and DINAR [35]
yield stretched and unnatural textures in the invisible re-
gions of the reference images. Moreover, in the third row,
we can see that these methods burn the hand texture into
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Figure 10. Qualitative comparison of editing the reference images
to the target weights with our method and the method by Ren et
al. [30].

the torso region. The image-to-image translation methods
such as NTED [31] and PIDM [4] show good results on the
DeepFashion dataset (the fifth row). However, they strug-
gle to preserve clothing textures and facial identity on other
datasets. The text-to-image approach, T2IA [24], also suf-
fers from this problem and even generates different back-
grounds from the reference images. Our method, on the
other hand, consistently produces satisfactory results on all
of the datasets. Our method successfully achieves a wide
range of pose editing for a variety of person images, which
is difficult to achieve with the existing methods.

4.2. Evaluation of body shape editing

To the best of our knowledge, there is no dataset avail-
able for objective quantitative evaluation of body shape
editing with large deformation. We therefore conducted a
qualitative comparison between our method and the state-
of-the-art method proposed by Ren et al. [30]. The existing
method controls the body shape using a warping strength as
input instead of a body height and weight. For fair com-
parison, we searched for an appropriate warping strength so
that the silhouette of the output image aligns with that of the
SMPL-X model with a body height and weight specified in
our method.

Qualitative comparison. Figure 10 shows the qualitative
results. In the results of the existing method, increasing
body size often causes significant distortion in the torso re-



Table 2. Quantitative results of the ablation study for diffusion-
based refinement (Steps 1 and 2).

[LPIPS| [ FID| [ ID] [ AW
wloSteps 1 &2 [ 0242 [ 55862 [ 0.232 | 3.68
wlo Step 2 0.239 | 45.949 | 0403 | 1.74
Ours 0.242 | 46432 | 0175 | 1.82
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Figure 11. Qualitative results of the ablation study for diffusion-
based refinement (Steps 1 and 2). As shown in the red boxes in
the second column, without both Steps 1 and 2, we can observe
not only artifacts on the hands and pants but also a distorted face.
The third column shows that Step 1 removes these artifacts (green
boxes), but the identity of the face is still not improved (red boxes).
Step 2 can address this problem, as shown in the green boxes in
the fourth column.

gions. In contrast, our method can create plausible images.
In addition, our method can handle changes in the facial
appearance that occur with changes in body weight.

4.3. Ablation studies

We conducted an ablation study on the MonoPerfCap
dataset [41] to evaluate the effectiveness of our diffusion-
based image refinement (i.e., Steps 1 and 2). Table 2 and
Figure 11 show the quantitative and qualitative results, re-
spectively. These results demonstrate that our fullbody re-
finement (Step 1) improves realism (FID) of the output im-
ages. This realism improvement also benefits the accuracy
of pose estimation (Pose). However, we can see that fa-
cial identity (ID) degrades because the VAE used in the
LDM cannot reconstruct relatively small faces accurately
from low-dimensional latent maps. Our facial refinement
(Step 2) can improve facial identity while preserving the
scores of the other metrics.

In addition, we conducted another ablation study to eval-
uate our individual refinement approaches described in Sec-
tion 3.1. Table 3 and Figure 12 show the quantitative and
qualitative results, respectively. Here, “opt” means text em-
bedding optimization, “iterate” means iterative refinement,

Table 3. Quantitative results of the ablation study for our refine-
ment approaches including text embedding optimization (opt), it-
erative refinement (iterate), and input reinitialization (reset).

[LPIPS| [ FID| [ ID| [ AW

w/o opt & iterate & reset 0.244 56.093 | 0.404 1.93
w/o iterate & reset 0.240 47.770 | 0.183 2.04
w/o reset 0.277 56.670 | 0.187 2.37
Ours 0.242 46.432 | 0.175 1.82

Reference &  w/o opt& w/o iterate& w/o reset ~ Ours
Target iterate & reset  reset

Figure 12. Qualitative results of the ablation study for our refine-
ment approaches including text embedding optimization (opt), it-
erative refinement (iterate), and input reinitialization (reset).

and “reset” means input reinitialization. As shown in the
comparison between “w/o opt & iterate & reset” and “w/o
& iterate & reset,” text embedding optimization improves
realism and facial identity. From the results of “w/o reset”
and ours, we can also see that only iterative refinement does
not perform well on its own but is effective when combined
with input reinitialization.

5. Conclusion

In this paper, we proposed a method for editing the pose
and body shape of a fullbody human image. Our method
leverages a 3D parametric body model to control the pose
and body shape using keypoints, height, and weight as in-
put. Our two-step refinement pipeline is based on image-
to-image translation with an LDM and refines the body and
facial regions of the textured 3D human models. To improve
the quality of the output images obtained via refinement, we
introduced iterative refinement, text embedding optimiza-
tion, and input reinitialization into the refinement pipeline.
In the task of pose editing, our method exhibited quantita-
tively and qualitatively superior or comparable results com-
pared to existing methods on multiple datasets. Our method
also shows more plausible results in body shape editing. In
the future, we will explore ways to speed up our method and
enhance its capability to handle loose clothing like skirts.
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A. Implementation Details
A.1. Initial textured 3D body construction

Projective texture mapping. We explain how to con-
struct an initial textured body model with the desired pose
and body shape. First, we fit the SMPL-X model [26] to
the reference image using an existing method [43]. For the
reference person image and the fitted SMPL-X model, we
assign UV coordinates to corresponding vertices via projec-
tive texture mapping. We then change the pose and shape
of the SMPL-X model to obtain an initial textured 3D body
model.

Horizontal reflection padding. Naively applying projec-
tive texture mapping yields visual artifacts, particularly
around the body’s silhouette, due to slight misalignment.
For example, the black background color appears around
the right hand and right leg in the example of Figure 13,
lower-middle. As a simple remedy for this, we apply hor-
izontal reflection padding to the original reference image
using a binary mask; for each scanline from slightly inside
the mask, we copy pixel values at the mirror-symmetric po-
sitions about the mask boundary (Figure 13, upper-right).
This approach is not a perfect solution but is sufficient
to avoid copying the background color (Figure 13, lower-
right).

A.2. Loss functions

Here we describe the details of loss functions used in
Steps 1 and 2.

Step 1: Fullbody refinement. For the refinement of a
fullbody image, we use the Adaptive Wing (AW) loss [40]
L aw and CLIP similarity [29] loss Lorprp. The AW loss
L aw is the adaptive wing loss [40] defined between the
joint heatmaps estimated using OpenPose [5] for the output
and rendered SMPL-X images. Our heatmap resolution is
128 x 128. CLIP similarity loss Lo 7 p is defined between
the output and reference images for each part [10] based on
SMPL-X labeling as follows:

l
Lop =Y (I8 ¢(1%,), (1)
p

where [ is the number of body part labels of SMPL-X, I,.. ¢
and I, are the body parts cropped from the reference and
output images. ¢ is the normalized embedding function of
the CLIP. The total loss function for fullbody refinement is:
2

Lruivody = AawLaw + AcripLcrip,

where Apyse = 0.002 and Acprp = 2 are the weights.
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Target SMPL-X

Textured SMPL-X Textured SMPL-X

(Padded)

Figure 13. Horizontal reflection padding is applied to the reference
image to prevent the background color from showing up in the
texture-projected human model.

Step 2: Facial refinement. To optimize the text embed-
ding for refining a face, we use the identity loss using Mag-
Face [23], the keypoint loss using RetinaFace [7], and the
CLIP similarity [29]. The keypoint loss Lieypoint 1S defined
as MSE loss between the face keypoints estimated using Re-
finaFace [7] for the output and rendered SMPL-X images.
Unlike fullbody refinement, we simply measure the CLIP
similarity between the reference and the output face image.
The total loss function for the facial refinement is:

LFace = ArpLrp +AcripLornip + Akeypoint L K eypoint s

3
where Axeypoint = 0.1, Acrrp = 10, and A\;p = 10 are
the weights. When we edit the body shape, we halve Acprp
and A;p to tolerate changes in facial features.

A.3. Text prompt

We describe the details of prompts used for condition-
ing on our refinement module. Our prompts contain “sks,”
a special token used for text-to-image personalization by
DreamBooth [34]. Our method associates this token with



Table 4. Adjectives describing body shape corresponding to BMI.

BMI \ adjective
<15.0 “skinny”
< 18.5 | “under weight”
<25.0
<30.0 “overweight”
> 30.0 “fat”

a reference person. In addition, our prompts contain infor-
mation on a target face orientation, such as “facing left.”
We used the face detection API of Face++ [37] to obtain
the face orientation, which is automatically reflected in the
prompts. For body shape editing, we use adjectives describ-
ing the body shape according to BMI calculated from the
input height and weight (see Table 4). For example, when
the target model faces to the left with a fat body, we use a
prompt “photo of a fat sks man facing left” in Step 1. In
Step 2, we use “face” instead of “man”.

A 4. Refinement mask

We describe how to create a refinement mask, which in-
dicates areas to be refined. In Step 1, we compute a mask
consisting of invisible areas in a reference person image.
To do so, we first emit a ray to each triangle’s centroid in
a SMPL-X [26] mesh from the viewpoint for texture pro-
jection. Next, we assign an “invisible” label to the triangles
that the rays do not hit. After editing the pose and body
shape of the SMPL-X model, we render the edited model
to obtain a mask according to the labeled areas. In Step 2,
we compute a mask by assigning O to pixels within 20%
of the mask width from its boundaries, measured using the
Manhattan distance, and 1 to the remaining pixels.

B. Additional Results

We show the additional results that are not included in
the main paper due to the page limitation. The reference im-
ages of the following results were obtained from DeepFash-
ion [17], MonoPerfCap [41], Everybody Dance Now [6],
and EHF [26].

B.1. Qualitative evaluation
B.1.1 Evaluation of body shape editing

We conducted a qualitative comparison with the state-of-
the-art body shape editing method by Ren et al. [30] in the
same way as their paper. Figure 14 shows the results. In
the results of their method, increasing the body size often
causes significant distortion in the torso. In contrast, our
method can create plausible images. Our method can also
handle facial appearance changes that occur along with the
body weight changes.
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Table 5. Quantitative evaluation when images are simply recon-
structed with VAE.

| SSIMT [LPIPS | | FID| | ID |
0714 | 0243 | 55.862 [ 0.232
0.716 | 0.242 | 65.484 | 0.375

Input
Reconstruction

B.1.2 Evaluation of pose and body shape editing

Figure 15 shows our unprecedented results in which both
poses and body shapes were edited at the same time. Such
simultaneous edits have been infeasible with existing meth-
ods, to the best of our knowledge. The results demonstrate
that our method can edit the target pose and body shape
simultaneously while maintaining the subject’s identity in
terms of clothing and facial features.

B.2. Ablation Study
B.2.1 Facial degradation by VAE

In the LDM used in our method, the face quality is degraded
by simply reconstructing the input image with VAE. This is
because the VAE used in the LDM cannot reconstruct rel-
atively small faces accurately from low-dimensional latent
maps. An example of the degradation is shown in Figure 16,
and the quantitative evaluation metrics are shown in Table 5.
These results warrant our approach that extracts a face re-
gion and refines it separately.

B.2.2 Refinement with weak noise

To find an appropriate noise intensity for our iterative re-
finement, we experimented with single iterations of refine-
ment with different noise levels. We increased the noise
level from 10% to 90% in increments of 10 percentage
points. Table 6 summarizes the qualitative evaluation, and
Figure 17 shows graphs of SSIM and LPIPS with varying
noise intensities. These results revealed that weaker noise
tends to yield better results regarding pixel-level metrics
such as PSNR and SSIM because weaker noise preserves
the projected textures as they are. On the other hand, for
more perceptual metrics such as LPIPS and FID, the val-
ues tend to be optimal around 30% to 50% noise intensity,
with performance degrading as the noise intensity deviates
from this range. This pattern suggests that, around 30% to
40% noise intensity, we can effectively correct unnatural ar-
eas while preserving the texture of the input image. Conse-
quently, we conclude that weak noise intensities from 30%
to 40% seem effective for refinement. In our approach, we
choose 30% noise intensity to balance computational effi-
ciency while maintaining effectiveness.
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Figure 14. Qualitative comparison of editing the reference images to the target weights with the method by Ren et al. [30] and ours.
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Figure 15. Qualitative comparison of simultaneous edits of both target’s poses and body shapes in reference images using our method. The
edited results are plausible with identity preservation in terms of clothing and facial features.
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Reference Input Reconstruction

Figure 16. Qualitative comparison of decreased facial quality
when simply reconstructing images using VAE.

Table 6. Quantitative evaluation metrics for a single refinement
with varying noise intensities.

[PSNRT [ SSIMT [ LPIPS | [ FID |

10% | 19.613 0.717 0.246 | 59.221
20% | 19.650 0.718 0.245 | 57.808
30% | 19.669 0.718 0.244 | 56.093
40% | 19.669 0.718 0.244 | 56.084
50% | 19.561 0.716 0.244 | 50.748
60% | 19.582 0.714 0.245 | 52.582
70% | 19.519 0.712 0.246 | 51.816
80% | 19.433 0.710 0.248 | 51.592
90% | 19.356 0.708 0.250 | 52.011

0.718

—e— SSIM

—@— LPIPS }0.249
0.716

0.248

0.714 1 "

z 0.247 &

] =
07121 0.246
0.710 - L 0.245
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Figure 17. Graphs depicting the variations of SSIM and LPIPS
scores with varying noise intensities.
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