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ABSTRACT 
We propose a method for designing targeted 3D polygonal 
models that can be folded flat, which consist of side panels as 
well as horizontal top and bottom panels. Vertically adjacent 
panels are connected by hinges at their horizontal edges. The 
models can be folded flat by pushing down the top panel, while 
they can be also deployed by pulling up the top panel. The key 
idea in making the model so that it can be folded flat is to add 
vertical slits along the edges of side panels; the horizontally 
adjacent side panels are separated in the folded state, and are 
connected to form a closed solid model in the deployed state. Our 
method takes the shapes of the top panel as well as the cross 
sections of the side panels as inputs. Users of our prototype 
system first simply draw the top panel as a convex polygon. They 
then draw polylines to specify the cross sections. Since the 
polyhedral model generated by the input data rarely satisfies flat-
foldability conditions, our system modifies the positions of the 
vertices in cross sections based on numerical optimization. 
Unlike most origami design systems that ignore material 
thickness, our system can output the 3D geometry of panels so 
that they can be used to form a closed 3D model with a certain 
thickness.  
 
1. INTORDUCTION 
Folding objects compactly is essential to conserve storage space 
and carrying costs. Although objects made of thin soft materials 
are easy to fold, to make objects that consist of rigid materials 
foldable is not straightforward. We propose a method of 
designing polygonal models that can be folded flat that consist 
of rigid panels in this paper. We permit the edges to separate 
when the model is folded flat to simplify the problem, and we 
limit the shapes as follows. Our target models consist of rigid 
side panels as well as horizontal top and bottom panels, as shown 
in Figure 1. The side panels are connected vertically by hinges at 
their horizontal edges. We call the groups of side panels 
connected by hinges side-panel chains hereafter. For example, 
the model in Figure 1 has three side-panel chains. By pushing the 

top panel down, the model can be folded flat, while the model 
can be also deployed by pulling up the top panel. The key point 
is that all edges that are not connected by the hinges are separated 
in the folded state while the edges are connected to form a closed 
solid model in the deployed state.  
Our method uses the shapes of the top panel as well as the cross-
sections of the side-panel chains as inputs. Users simply first 
draw the top panel as a convex polygon in our prototype system. 
They then draw polylines to specify the cross sections. Since the 
polyhedral model generated by the input data rarely satisfies the 
flat-foldability conditions, our system modifies the positions of 
the vertices in cross sections based on numerical optimization. 
Each side panel is generated by perpendicularly sweeping the 
cross sections, and we can thus simplify the flat-foldability 
problem from that of 2D panels in 3D space into that of 1D line 
segments in 2D space. Our system then outputs the geometry of 
a flat-foldable polygonal model. Unlike most origami design 
systems that ignore material thickness, our system can output the 
3D geometry of panels so that they can form a closed 3D model 
with a certain thickness. 
Related studies are discussed in Section 2 of this paper and our 
method is described in Section 3. The results obtained with our 
new approach are presented in Section 4. Finally, our 
conclusions are presented in Section 5. 
 

 
Figure 1. Example of flat-foldable polygonal models, which has 

a top and a bottom polygonal panels and three side-panel 
chains. The left photograph shows the deployed state while the 

right one the folded state. 
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2. RELATED WORK 
Foldable structures have been widely studied in the area of 
origami engineering. Automobile airbags and solar panels on 
satellites are practical examples where objects must be 
compactly folded and instantly deployed when necessary. 
Origami engineering has contributed to improving the storability 
and portability of these products. 
‘Rigid origami’ has been seriously discussed due to its 
importance in engineering in studies on foldable structures 
[1][2][3]. Rigid origami represents objects that consist of rigid 
panels joined by hinges and deform smoothly without any gaps. 
Designing rigid origami is a difficult problem because of its 
severe constraints.  
Tachi proposed a method of designing rigid origami that can be 
folded flat [4]. However, the shapes designed with his method is 
limited to folding based on repeats of simple patterns. It is 
particularly difficult to design rigid origami as intended shapes. 
For example, it has been proven that no closed polyhedral model 
can be folded flat without holes by Cauchy [5]. Our approach 
avoids this difficulty by permitting the edges to separate in the 
folded state. Users can interactively design a model with a simple 
interface with some degree of flexibility under a limited shape 
domain. 
There has been some software for origami design [6][7][8], and 
most of this has assumed that the material thickness is zero. 
Although a paper sheet is sufficiently thin to ignore thickness, 
we have to be aware of how thick material is in the design 
process. Handling the thickness of material is not a simple 
problem especially where more than three folding edges intersect 
at the same point. We have to consider the folding mechanism at 
the edges to avoid interference between panels. Tachi also 
propose a method that enable thick panels to be folded without 
deforming them by permitting holes to appear at the corners 
where folding edges meet [9]. The system we designed does not 
have any inner points where folding lines meet. We propose 
simple approaches that use hinges at the folding edges.  
 
3. PROPOSED METHOD 
Our target polygonal model consists of the top and the bottom 
panels as well as side-panel chains shown in Figure 1. The model 
in Figure 2 has a triangular top panel, and three side-panel 
chains. The whole shape is defined just by the shape of the top 
panel (red triangle in Figure 2) and the polylines (blue lines in 
Figure 2), which represent the cross-sections of the side-panel 
chains. Note that the shape of the bottom panel is also determined 
accordingly. Although our method first ignores material 
thickness, it can optionally take into consideration the thickness 
of panels. When the panels are thick, the system calculates the 
shape of each panel in 3D, and a way of applying two types of 
hinges.  
 

 
Figure 2. Example of polyhedral model that our method is 

target at. User inputs shapes of top and bottom panels and cross 
sections of side panels. 

 
This section describes the method of designing a flat-foldable 3D 
polyhedral model. Our method involves six steps. 
(1) Construct the initial polygonal model from user input. 
(2) Find the best configuration for the folded state from all 

possible cases. 
(3) Adjust the position of vertices in the cross-section of side-

panel chains to satisfy flat-foldability conditions. 
(4) Simulate the motion of the model during folding and 

deploying operations, and present the three dimensional 
computer graphics (3DCG) animation. 

(5) Optionally add thickness to the panels.  
(6) Modify the shape of the panels to avoid interference based 

on the types of hinges and their thickness.   
The details on these steps are described in the following 
subsections. 
 
3.1. Construction of Initial Polyhedral Model from 

User Input 
The user first inputs the top panel as a polygon with N (>2) edges 
on a horizontal plane as well as its height, i.e., the distance from 
the bottom panel. The number of edges can be set arbitrarily. 
Figure 3 has an example of the input for the top panel with three 
vertices. ௜ܸ 			ሺ݅ ൌ 0,⋯ ,ܰ െ 1ሻ represents a vertex of the top 
panel. Because the side panels are flattened and spread as seen 
in Figure 1, the top panel is limited to be convex to prevent 
adjacent side-panel chains from interfering with one another. 
 

 
Figure 3. Convex shape of top panel. Midpoint ௜ܲ of each edge 

is initial point of polyline that forms each side-panel chain. 
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Figure 4. Polylines that define shapes of side panels. 

 
The user next inputs the cross sections of the side-panel chains. 
The number of side-panel chains is defined by the number of 
edges of the top panel, i.e., number N. The user inputs each cross 
section as a polyline on the vertical plane that is perpendicular to 
each edge of the top panel. We have defined the ݒݑ-coordinate 
system on the plane as shown in Figure 4. Midpoint ௜ܲ of each 
edge of the top panel is initial point of polyline that forms each 
side-panel chain. The number of line segments on the polyline is 
arbitrary. Since the top and bottom panels are horizontal, the 
endpoints of each polyline share the same v coordinate. After the 
user has drawn the necessary polylines, each side panel is 
generated by calculating an infinite plane spanned by each line 
segment of a polyline and a horizontal edge and by trimming the 
infinite plane with other adjacent planes (Figure 5). The shape of 
the bottom panel is uniquely determined in this process.  

 

 
Figure 5. Polygonal model is generated from shape of top panel 

and polylines of cross sections. 
 
3.2. Assignment of Direction of Folds at Each Hinge 
The folding problem with side panels (a set of plane polygons 
that is in 3-dimensions) results in the problem with cross sections 
(a 1-dimensional polyline that is in 2-dimesions). The 
explanation in this section is independently applied to individual 
cross sections without dealing with others except for interference 
between nearby side panels. Let us consider a cross section that 
has ܯ vertices on a ݒݑ plane in the following. ܳ଴ and ܳெିଵ 
correspond to the end points on the top and bottom panels. ܧ௜ is 
the edge between ܳ௜  and ܳ௜ାଵ  ሺ݅ ൌ 0,⋯ ܯ, െ 2ሻ , whose 
length is ݈௜. Hinges, which can take any dihedral angle between 
0 to 360º, are placed at each ܳ௜. When the cross section is flat-
folded, each edge ܧ௜ is horizontally arranged while maintaining 
the continuity of the jointed edge. The geometric restrictions that 
each cross section has to satisfy are represented as Eqs. (1) and 
(2). 
ᇱ௜ݑ ൒  ሺ1ሻ																																																																															and	௜ݑ

݌ܽ݃ ൌ ሺݑெିଵ െ ଴ሻݑ െ෍ ௜݈௜ߜ
௜

ൌ 0									ሺߜ௜ ∈ ሼെ1,1ሽሻ			ሺ2ሻ 

௜ݑ  and ݑᇱ௜  in Eq. (1) correspond to the u-coordinate of ܳ௜ 
before and after flat-folding. The condition represented by Eq. 
(1) prevents nearby side panels from interfering. If Eq. (1) is not 
satisfied, it means that the vertex moves inward of the solid when 
it is folded. As a result, the side panels in neighboring side-panel 
chains interfere in the folding process as can be seen in Figure 6.  
 

 
Figure 6. Shape in deployed state on the left shows that nearby 

panels penetrate each other in folded state on the right if the 
vertex (red) moves inward.  

 
 ௜ faces upward and -1 if downwardܧ ௜ in Eq. (2) becomes 1 ifߜ
(Figure 7). Because we have assumed that the top panel moves 
downward vertically a straight line, i.e., the u-coordinate is 
constant, the distance between the two end points of the side-
panel chain in the u-coordinate have to be consistent both in flat-
folded and deployed states. Eq. (2) represents this condition. 
The angles of hinges become 0, 180, or 360º in the flat-folded 
state. Each angle corresponds to a mountain fold, flat state, and 
valley fold. As a result, every panel faces either upward or 
downward. If we ignore any geometrical restrictions, the total 
number of possible folded configurations is 2ெିଵ as outlined in 
Figure 7. However, even though all possible folded 
configurations are checked, Eq. (2) is not usually satisfied 
because the value of the gap takes discrete values based on the 
lengths of edges in the cross section that a user has freely drawn. 
Therefore, we first select the best configuration from those that 
satisfy Eq. (1), i.e., the best valley/flat/mountain assignment for 
hinges in the flat-folded state. Then, the system adjusts the 
position of the vertices of input polylines to enable them to 
satisfy Eq. (2) by employing numerical optimization. 

 

 
Figure 7. Example of folding configurations of cross section 
that has four panels and five hinges. Two bold lines represent 

top and bottom panels. Thin arrows represent normal directions 
of each edge. Symbols represent folding angles at hinges in 

folded state. Circles, triangles, and squares correspond to 180, 
0, and 360º angles. There are 2ସ ൌ 16 configurations.  

 
Because many of the configurations possibly satisfy Eq. (1), we 
selected the best one of them using certain criteria. We would 
like to make the model so that it could be folded smoothly. We 
assume that it would not be beneficial if a hinge had to be folded 
in the opposite direction. For example, it would be difficult to 
fold a hinge, whose angle was less than 180º (mountain fold) in 
a deployed state, into 360º (valley fold) in the flat-folded state. 
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We would like to make the change in the normal directions of 
each panel small for the same reason. We use the following 
formula to select the best configuration with these criteria as an 
objective function: 

௧௢௧௔௟ܥ ൌ ωଵܥଵ ൅ ωଶܥଶ ൅ ωଷܥଷ			(3) 

ଵܥ ൌ െ෍ ሺ݊௜ ൈ ݊௜ାଵሻ ∙ ሺ0	0	ߩ௜ሻ
T

௜
 

ଶܥ ൌ െ∑ ݊௜ ∙ ݊
ᇱ
௜௜ 				           

ଷܥ ൌ
|௚௔௣|

∑ ௟೔೔
 .				ܯ

Here, ߩ௜ takes 1, 0, or -1 based on the direction of the hinge at 
ܳ௜  in the folded state. Each value corresponds to a mountain 
fold, flat state, and valley fold. ݊௜ corresponds to unit normal 
vector of ܧ௜ in deployed state. With this setup, ܥଵ takes a small 
value when the assignments of folds for hinges are similar before 
and after being folded. ݊ᇱ௜ corresponds to unit normal vector of 
௜ܧ  in folded states. Since the inner products of ݊௜  and ݊ᇱ௜ 
represent the cosine of the angle between normal vectors when 
the angle is small, i.e., the difference in the normal vectors is 
small, ܥଶ takes a smaller value. The ݃ܽ݌ is the left-hand-side 
value in Eq. (2). The system modifies the input cross section to 
satisfy Eq. (2) in the subsequent step. The amount of 
modification will be small if the gap is close to zero. Therefore 
 ,ଷ is defined to minimize the gap. The total evaluation valueܥ
  .ଷܥ ଶ, andܥ ,ଵܥ ௧௢௧௔௟, is defined as the weighted sum ofܥ
The system selects the best configuration that minimize ܥ௧௢௧௔௟ 
from all possible mountain/valley assignments to hinges for each 
cross section. We simply set 1.0 for all ݓଵ, ݓଶ, and ݓଷ. The 
positions of vertices ܳ௜ in the cross section were then adjusted 
to make the value of the gap zero. We will describe how we 
adjusted them in the next subsection.  
 
3.3. Modification of Cross Section 
The positions of vertices ܳ௜ in the cross section were adjusted 
to eliminate the gap, i.e., to satisfy Eq. (2) after we had selected 
the best configuration. To achieve this, we first update the edge 
length, ݈௜, at the rate of the length relative to the total length of 

edges. This means that ݈௜ is updated as ݈௜ ൅
௟೔

∑ ௟೔೔
 With this .݌ܽ݃

update, the gap represented in Eq. (2) become zero. We then 
minimize the energy function, E, in Eq. (4) by using the steepest 
descent method so that the optimized cross section becomes 
approximately flat-foldable while keeping the modification 
small. 

E ൌ ߱௉෍ ฮ ෠ܳ௜ െ ܳ௜ฮ
ଶ

௜
൅ ߱௟෍ ฮመ݈௜ െ ݈௜ฮ

ଶ

௜
	

				ൌ ߱௉෍ ሼሺݑො௜ െ ௜ሻݑ
ଶ ൅ ሺݒො௜ െ ௜ሻݒ

ଶሽ
௜

൅ ߱௟෍ ቄඥሺݑො௜ െ ො௜ାଵሻݑ
ଶ ൅ ሺݒො௜ െ ො௜ାଵሻݒ

ଶ

௜

െ ݈௜ቅ
ଶ
							ሺ4ሻ 

where ෠ܳ௜ and መ݈௜ correspond to the adjusted vertex position and 
edge length. The first term in Eq. (4) makes the change in the 
input shape of the cross section small. The second term in Eq. 
(4) adjusts the length of the line segments to satisfy Eq. (2). ߱௉ 
and ߱௟ are their weights. Because the condition represented by 

Eq. (2) is more essential for flat-foldability, we set ߱௉ ൌ 0.001 
and ߱௟ ൌ1.0 based on our experiments. The system stops the 
optimization process when the gap becomes smaller than 0.001 
of the average length of edges ܧ௜, whose details are described in 
Section 5. 
 
3.4. Folding Simulation 
Previewing the folding motion in 3DCG is important to confirm 
the results before making a physical product. Because no side-
panel chains interfere with other chains as long as Eq. (1) is 
satisfied, motion can be calculated independently for each side-
panel chain. Since the bottom end point is fixed, and the top end 
point moves downward vertically a straight line, using inverse 
kinematics (IK) would be a solution to generating the motion of 
folding. However, it cannot be guaranteed that the side panels 
can be folded into a flat state, by simply specifying the positions 
of the two end points. In our method, we combine both forward 
kinematics (FK) and IK. 
First, the system calculates the angle of each hinge at time t as 
follows. 

ሺ1 െ ሻܽ௜௡௜௧௜௔௟ݐ ൅ ሺ0		௙௢௟ௗ௘ௗܽݐ ൑ ݐ ൑ 1ሻ				ሺ5ሻ 
where ܽ௜௡௜௧௜௔௟ is the initial angle and ܽ௙௢௟ௗ௘ௗ is the angle in the 
folded state of the hinge.  
The shapes of the side-panel chains are calculated based on the 
angles by fixing the end point on the bottom panel. Then the 
system employs IK to adjust the position of the end point on the 
top panel. Furthermore, the system adjusts the height in the IK 
calculations to keep the height of all side-panel chains in the 
same level as shown in Figure 8. 
  

  
Figure 8. Shapes of side-panel chains in folding process. 

Heights of all chains are maintained the same. 
 
3.5. Material Thickness 
Although the thickness of material is ignored in most origami 
design systems, we have to take thickness into account when we 
create objects with thick material.  
When we consider adding thickness to a zero-thickness polygon, 
there are three possibilities regarding which side to add 
thickness, i.e., adding thickness inward, outward, or both. If we 
use thick polygonal panels, we have to take interference into 
consideration. Further, we also have to consider the mechanism 
for hinges.  
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Here, we describe two different ways of adding thickness. The 
first is to add thickness to the outside of the polygonal model so 
that the inside space retains its designed shape. This is achieved 
by using hinges that have one rotational axis. The second way is 
to add half the material thickness to both sides of the polygonal 
model with two axis hinges. 
  
3.5.1. Hinge Model with One Axis 
A solid can close tightly as illustrated in Figure 9 by adding 
tapers to the edges of the panels. 

    
 

Figure 9. Panels on left are simple rectangular solids. Panels on 
middle are tapered at edges. Red dots represents locations of 

hinges. The taper angle is denoted as ߮ on right. 
 

The angle of the tapers of the edges and the positions of hinges 
differ according to the direction of folding before and after being 
folded. Since there are mountain and valley cases in the initial 
state while mountain, valley, and flat cases in the folded state, 
there are six combinations for the direction of folding. The taper 
angle ߮ , and the location of the hinge for each case are 
summarized in Table 1. When hinges are positioned outside 
(denoted as 'out' in Table 1), its position ܳ௜

௢௨௧ is calculated as  

ܳ௜
௢௨௧ ൌ ܳ௜ ൅

݄

ሺ߮ሻ݊݅ݏ
ܴሺ߮ሻ

పିଵሬሬሬሬሬሬሬሬԦܧ

|పିଵሬሬሬሬሬሬሬሬԦܧ|
	, 

where ܴሺ∙ሻ is the rotation matrix and ݄ is thickness. 
 
Table 1. Relation between combinations of folding directions, 

taper angle ߮ and locations of hinges. 

 

 
Figure 10. Cross section of side-panel chain, which has two 

panels connected by hinge. Six figures from left to right 
correspond to configurations listed in Table 1 from top to 

bottom. Bold lines are user-specified polylines. Red circles 
represent locations of hinges. 

 
Figure 10 outlines the cross section of a side-panel chain, which 
has two panels connected by a hinge. The mechanism for the 
hinge is achieved simply by taping panels together at their edges. 
However, there are drawbacks in this structure; it is not strong 
sufficiently since the panels are connected at the ridge lines. 
Alternatively, we use hinges that have two rotating axes by 
adding thickness to both sides of the polygonal model, as 
described. There exist these hinges called rolling contact 
joints[10]. These hinges use flexible bands that create the 
necessary constraints to enforce a rolling movement between 
two panels. On the other hand our hinges use a panel bridging 
between two panels instead of flexible bands 
 
3.5.2. Hinge Model with Two Axes 
Hinges that have the two rotation axes in Figures 11 and 12 are 
commonly used to connect thick panels that are folded flat. The 
hinges can take arbitrary angles from 0 to 360º. These kinds of 
hinges are called double hinges. We have to modify the shape of 
the panel if we use these types of hinges as follows. First, we add 
a thickness of ݄ 2⁄  to both the inside and outside of the cross 
section for panel thickness ݄. We then modify the shapes of the 
edges of each panel to a semi-cylindrical shape so that they touch 
each other as in Figure 11. Further, we have to modify the shapes 
of the side edges of panels to avoid interference with nearby 
panels. The details on these modifications are described in the 
next subsection.  
 

 
Figure 11. Illustrations of how to add thickness with double 

hinges.  
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Figure 12. Assembly of the double hinge. Two thick panels 

connected by the double hinge can make arbitral angles.  
 

3.5.3. Interferences Between Side Panels 
Although 3D polyhedral models generated by the system 
described in Subsections 3.5.1 and 3.5.2 do not have 
interferences, if we add thickness to the panels, we have to 
consider interference between nearby side-panel chains. If 
position of a corner of a thick side panel does not satisfy Eq.(1), 
i.e. moves inward of the solid when it is folded, it interferes 
nearby panels as corner A in left of Figure 13. In such a case, the 
system removes the interfering volume by trimming the corner 
of the panel by the triangle A'BC as shown in right of Figure 13 
to avoid the interference. A' is the point where A was moved in 
the direction perpendicular to the cross section of the side-panel 
chain so that the point satisfies Eq.(1). B is the point where edges 
of nearby side-panel chain crosses in folded state. And C is the 
vertex of the initial polygonal model. 
 

 
Figure 13. There exist interferences between nearby panels if 
we add thickness to the initial polygonal model (left). Corners 

are trimmed to avoid interferes (right).  
 
4. RESULTS 
We implemented the proposed method as a graphical user 
interface (GUI) application, and created prototype models. Here, 
we describe the results. 
 
4.1. Adjustment of Input Cross Section 

We designed a simple model that have three side-panel chains 
from input. Figure 14 shows the effect of the adjustment of 
vertex positions in the cross sections. The red polyline indicates 
the initial shape user-specified, and the blue polyline indicates 
the adjusted shape to satisfy the conditions in Eqs. (1) and (2). 
After the best configuration, i.e., mountain/flat/valley 
assignments were found, the position was calculated with the 
method described in Subsection 3.3. The maximum value of the 
distance between the initial and modified positions was 12.3 mm, 
and the average was 5.68 mm when we set the height to 12.9 cm. 
The maximum gap was 0.0335 mm when numerical 
optimizations converged.  
 

 
Figure 14. Red polyline indicates user input, and blue polyline 

indicates adjusted one. 
 

4.2. Flat-foldable Polygonal Model without 
Thickness  

The prototype models were made with paper sheets by 
converting designed 3D model data without thickness to 2D 
development. Figure 15 shows the 3D polygonal model and its 
development. The pairs of letters on edges represent the direction 
of folding before and after being folded. M, F, and V represent 
mountain folds, flat states, and valley folds, respectively. For 
example, (M, F) means the edge is a mountain before folding, 
and the edge becomes flat when the model is in a flat state. The 
assembled model is in Figure 1. The model is 10.5 cm in depth, 
14.7 cm in width, and 8.0 cm in height when it is deployed. 

 

  
Figure 15. Development of the 3D polygonal model 

 in Figure 1.  
 
We similarly created a sphinx model as a more elaborate 
example, as shown in Figure 16. The model was 5.5 cm in depth, 
17.2 cm in width and 8.7 cm in height. The calculation time for 
all processes was less than 1 second.  
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Figure 16. Sphinx model in deployed state (top left) and folded 

state (top right), and its development (bottom). 
 
4.3. Flat-foldable Polygonal Model with Thickness 
After we had designed a polygonal model, we added material 
thickness and hinge structures as described in Subsection 3.5. We 
made both the hinge models. 
Figure 17 shows the prototype model whose hinges have one 
rotation axis. The prototype model in the upper row was 10.5 cm 
deep, 10.5 cm wide, 12.0 cm high, and 0.5 cm thick. When it is 
folded, it had four layers and is 10.0 cm in radius. After the 
system had generated 3D geometry data for the panels, the panels 
were printed out with a 3D printer. The hinges connected two 
panels were substituted by taping inside of the model.  
Figure 18 shows the prototype model whose hinges had two 
rotation axes. The prototype in upper row was 4.0 cm deep, 
3.5cm wide, 8.5cm high, and 0.5 cm thick. When it was folded, 
it had two layers and is 10.0 cm in radius. 
The lower rows both in Figures 17 and 18 show CG images of 
the model in Figure 1 with thickness. 
 

 

  
Figure 17. Prototypes of hinge model with one axis. Shapes in 

deployed state (left, center) and folded state (right). The 
photographs in the upper row are physical models, and the 

photographs in the lower row are CGs. 

   

 
Figure 18. Prototype of hinge model with two axes. Shapes in 

deployed state (left) and folded state (right). The photographs in 
the upper row are physical models, and the photographs in the 

lower row are CGs. 
 
5. CONCLUSION AND FUTURE WORK 
We have proposed a method for designing flat-foldable 
polygonal models. We confirmed that flat foldable polygons can 
be designed with a simple user interface regardless of the 
thickness of materials using our method.  
In future work, we intend to extend our method to handle 
polygonal models whose top panels are concave. Further, we 
intend to consider creating a more complex model by dividing 
the model into sub-parts. Although our method limits the 
trajectory of the top panel along a vertical straight line, if we 
allow other trajectories, more various shapes could be flat-
folded. In addition, we need to consider mechanisms to keep the 
model stable in the deployed state. 
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