
EUROGRAPHICS 2016 / J. Jorge and M. Lin
(Guest Editors)

Volume 35 (2016), Number 2

DeepProp: Extracting Deep Features
from a Single Image for Edit Propagation

Yuki Endo1 Satoshi Iizuka2 Yoshihiro Kanamori1 Jun Mitani1

1 University of Tsukuba 2 Waseda University / JST CREST

Abstract

Edit propagation is a technique that can propagate various image edits (e.g., colorization and recoloring) performed via user
strokes to the entire image based on similarity of image features. In most previous work, users must manually determine the
importance of each image feature (e.g., color, coordinates, and textures) in accordance with their needs and target images.
We focus on representation learning that automatically learns feature representations only from user strokes in a single image
instead of tuning existing features manually. To this end, this paper proposes an edit propagation method using a deep neural
network (DNN). Our DNN, which consists of several layers such as convolutional layers and a feature combiner, extracts stroke-
adapted visual features and spatial features, and then adjusts the importance of them. We also develop a learning algorithm for
our DNN that does not suffer from the vanishing gradient problem, and hence avoids falling into undesirable locally optimal
solutions. We demonstrate that edit propagation with deep features, without manual feature tuning, can achieve better results
than previous work.

Categories and Subject Descriptors (according to ACM CCS): I.4.0 [Image Processing And Computer Vision]: General—

1. Introduction

Edit propagation enables us to easily edit images based on sim-
ple user input. Various applications of edit propagation exist, such
as grayscale image colorization, color image recoloring, segmen-
tation and tone adjustment. Many efforts have been made to at-
tack the edit propagation problem [LLW04, LWCO∗07, LAA08,
XLJ∗09,XWT∗09,LJH10,CZZT12,XYJ13,CZL∗14,YY15]. Spec-
ifying sparse image edits, users can propagate the image edits to the
entire image according to the propagation principle based on pixel
similarity (e.g., proximities of positions, colors or textures).

We can regard edit propagation as a sort of multi-class classi-
fication problem. From image feature vector xi at pixel i, a typi-
cal edit propagation pipeline estimates multi-class probability vec-
tor yi ∈ [0,1]n that represents how likely it is that a pixel i be-
longs to each of n types of strokes (class labels). A model for esti-
mating yi is constructed from user-specified strokes and xi on the
strokes. A number of techniques have been proposed for edit prop-
agation using various models, such as optimization-based meth-
ods [LLW04, AP08], gentle boost classifier [LAA08], function in-
terpolation with radial basis functions (RBFs) [LJH10], manifold
learning [CZZT12], and a probabilistic model [XYJ13]. Most of
these previous studies use a combination of multiple features with
different meanings as input. For example, they use concatenated
features x = [σccT ,σttT ,σssT]T where c denotes pixel color, t tex-

Input image and user strokes

[LJH10]
= 5)

[XYJ13]
= 10)

[LJH10]
= 10)

[XYJ13]
= 5)

Our DNN

Figure 1: Image colorization using edit propagation. While exist-
ing methods require manual parameter tuning for each image fea-
ture, our DNN-based method automatically extracts stroke-adapted
features.

ture feature, and s spatial coordinate whereas σc, σt , and σs denote
parameters that determine the importance of each feature.

In most previous work, users must heuristically select the image
features that they use and adjust parameters for the features in ac-
cordance with their needs and target images. As shown in Figure 1,
the editing results can be drastically changed depending on the pa-
rameters. For example, edits on strokes with a given intensity prop-

submitted to EUROGRAPHICS 2016.

2 Endo, Iizuka, Kanamori and Mitani / DeepProp: Extracting Deep Features from a Single Image for Edit Propagation

DNN
model

Learning

Input image I on entire region

Estimation

Probability maps

Post-processing

Result

User feedback

Update

&

User strokes and
features on

Figure 2: System overview. The system first learns a DNN model from an input image and user strokes. Next, stroke probabilities on all pixels
are estimated using the DNN model, and probability maps are obtained. Finally, the probability maps are refined by post-processing. Every
time the user updates strokes, the system updates the DNN model efficiently using previously learned parameters.

agate to pixels that have similar intensity when σc is large. Further-
more, using too many visual features might limit the range/diversity
of input images on which the propagation succeeds. For example,
the Gabor feature, which is typically used as a texture feature, has
multiple parameters such as a kernel size and rotation angle. Using
various patterns of the parameters as well as other image features
causes an overfitting problem of the estimated model to training
data on strokes due to the increased dimension of input vectors.
Consequently, unneeded visual features degenerate estimated re-
sults [LAA08]. On the other hand, manually selecting appropriate
visual features from many candidates is labor intensive.

Considering the above, we conducted a study to address the fol-
lowing research question:

Can we automatically extract effective features for edit
propagation without selecting image features manually?

To this end, we adopt deep learning [Ben09], which is a technique
for learning deep neural network (DNN) models. Recently, this
technique dramatically improved the accuracy of image recognition
and speech recognition [KSH12,DLH∗13]. While conventional ap-
proaches manually engineer features for classification, DNNs can
be used for representation learning, which automatically extracts
effective high-level features for a task from low-level features (e.g.,
image pixels and audio spectrum).

In this paper, we propose DeepProp for extracting Deep fea-
tures from a single image for edit Propagation. Our method uses
low-level visual patches and spatial pixel coordinates as input of a
DNN that automatically extracts features adapted to user-specified
strokes from a single image. In contrast to most previous work, we
do not need to adjust the importance of the input features. Then,
we use the DNN as a classifier that estimates user stroke proba-
bilities, which represent how likely it is that each pixel belongs to
each stroke, from extracted features on the entire image. Figure 1
demonstrates that our method can, without tuning parameters for
image features, generate a better result than previous work.

For edit propagation with deep features, this paper makes the
following contributions:

• Edit propagation system using deep learning: We propose a
system design of a framework that consists of the following
three main modules (Figure 2): learning, estimation, and post-
processing. First, a DNN model is learned using user strokes

and pixels on the strokes as input. Then, using the learned DNN
model, user stroke probabilities are estimated on the entire image
(on pixels or, for more efficiency, superpixels), and probability
maps are obtained. Finally, probability maps or application re-
sults (e.g., colorization) obtained from the probability maps are
refined by post-processing. Every time the user updates strokes,
the system re-learns the DNN model efficiently using previously
learned parameters.

• DNN architecture for edit propagation: We propose a DNN ar-
chitecture that extracts stroke-adapted visual features and spatial
features using convolutional and fully-connected network struc-
tures. The importance of the extracted two features is also auto-
matically determined using a feature combiner layer, and stroke
probability vectors are computed from the combined features us-
ing a soft-max layer.

• Learning algorithm for our DNN: A number of local minima
can be found during optimization of parameters of DNN models,
especially when DNNs have complicated structures with deep
layers and many neurons. Optimizing the entire network of our
DNN tends to fall into such undesirable local minima due to the
error function’s vanishing gradients. This is because our DNN
contains two types of the networks with different depths. We de-
velop a learning algorithm that efficiently propagates the gradi-
ents to these networks and finds more desirable solutions, and
can generate better results than a naïve learning algorithm.

2. Related Work

2.1. Edit propagation

The first studies related to edit propagation are colorizations us-
ing optimization [LLW04] and chrominance blending [YS06].
In addition to these approaches based on pixel colors, coloriza-
tions using texture features in manga [QWH06] and natural im-
ages [LWCO∗07] have been also proposed. Furthermore, we can
regard tone adjustment [LFUS06], material editing [PL07], intrin-
sic images [BPD09] and editing of bidirectional texture functions
(BTFs) [XWT∗09] as applications of edit propagation because they
all propagate user edits based on similarities between on-stroke pix-
els and the rest of the image. Such stroke-based approaches are also
used in matting [LRAL07, RRW∗09], edge-preserving smooth-
ing [XLXJ11,CLKL14], and temporally consistent propagation for
video editing [CZL∗14].

submitted to EUROGRAPHICS 2016.

Endo, Iizuka, Kanamori and Mitani / DeepProp: Extracting Deep Features from a Single Image for Edit Propagation 3

Conv + ReLU Max-pooling Conv + ReLU

–dim.
visual feature

(c-channel patch)
-dim.

feature
-dim.

feature
-dim.

feature

256-dim. feature
Max-pooling

2-dim. spatial feature
(x and y coordinates)

Fully-conn.
+ ReLU

256-dim. feature

256-dim. feature
Fully-conn.

User stroke
probability

soft-max

Input image (c channels)

Visual feature extractor (VFE)

Spatial feature extractor (SFE)

Feature
Combiner (FC)

Label estimator (LE)

Fully-conn.

+
ReLU

+

Figure 3: Our deep neural network architecture.

Other than the various applications, advances have been also
made in the fundamental algorithms for edit propagation. Li et
al. proposed an approach using a gentle boost classifier by formu-
lating edit propagation as a pixel classification problem [LAA08].
AppProp [AP08] yields better propagation by optimizing color dif-
ferences for optimizing color differences not only between nearby
pixels, but also between non-neighboring ones. Computational
efficiency has been also improved by using a kd-tree [XLJ∗09],
continuously approximating feature space using radial basis func-
tions (RBFs) [LJH10], manifold learning [MCY∗13], efficient
stroke sampling [BHW11], and sparse pixel sampling [YY15].
Most of the previous approaches share a common issue, namely
that halo artifacts occur across object boundaries [LWA∗12]. Chen
et al. [LWA∗12] achieved graceful color blending along object
boundaries based on locally linear embedding (LLE), which was
further improved in terms of efficiency using dictionary learn-
ing [CZL∗14]. Xu et al. proposed a stochastic modeling of the
similarities between on-stroke and off-stroke pixels, based on itera-
tive feature discrimination and sparse sampling of on-stroke pix-
els [XYJ13]. Also, there are approaches using specific distance
metrics such as geodesic distance [CSRP10] and diffusion dis-
tance [FFL10]. Whereas these previous approaches use various im-
age features, effective features vary depending on input images
and user-specified strokes. Therefore, if multiple image features are
considered simultaneously, we have to tune the importance that en-
hances or suppresses each feature for each image. Even worse, the
more image features are used, the more over-fitting occurs.

2.2. Deep learning

Recently, deep learning has gained significant attention in com-
puter science. Deep learning is a generic term for techniques us-
ing deep neural network (DNN), and has achieved outstanding re-
sults in various fields. An advantage of DNN is that it can be
used for representation learning, where low-level features (e.g.,
pixel values) are directly used as input and automatically con-
verted to higher-level features through intermediate layers, with-
out conventional manual design of discriminative features. A com-
monly occurring problem is that of vanishing gradients of the en-

ergy functions, which hinders deep layers from sufficiently learn-
ing effective features, especially in deeper neural networks. Re-
cent progress including the unsupervised pretraining with deep be-
lief network (DBN) [BLP∗07] and the use of rectified linear unit
(ReLU) [GBB11] as well as performance improvement of comput-
ers in the last few years have enabled efficient learning using DNN.

With regards to the types of neural networks used for deep
learning, fully-connected neural network, convolutional neural net-
work (CNN) and recurrent neural network (RNN) are commonly
chosen [Ben09]. Fully-connected neural networks such as multi-
layer perceptron (MLP) are typical examples in DNN and have
been applied to classification and regression problems in sev-
eral research fields (e.g., speech recognition [KSH12, DLH∗13],
activity recognition [LGQ15], and exemplar-based photo adjust-
ment [YZW∗15]). On the other hand, CNNs are often used if the in-
puts are images. Unlike general fully-connected networks, a CNN
is a network consisting of convolutional layers with multiple fil-
ters and pooling layers, which enables CNN to achieve invariant
features (e.g., shift invariance) under various deformations during
feature extraction. CNNs have been applied to many image pro-
cessing tasks, such as image classification [XXY∗15], contour de-
tection [SWW∗15], motion deblurring [SCXP15], saliency detec-
tion [LY15], and depth estimation [LSL15]. We adopt a combina-
tion of a CNN and a fully-connected network for edit propagation
for the first time, and demonstrate its effectiveness through several
applications.

3. DNN Architecture

The basic idea for designing a DNN is to extract high-level features
for edit propagation from low-level visual and spatial features. In
edit propagation, we can assume that the lowest-level features are
color (or grayscale) values and coordinates. For visual features, it is
known that effective high-level features can be extracted using con-
volutional layers, as explained in Section 2. Instead of using single
pixels, we use color (or grayscale) patches as low-level visual fea-
tures for convolution. This is because a patch enables implicitly
handling pixel gradients and capturing more various patterns than

submitted to EUROGRAPHICS 2016.

4 Endo, Iizuka, Kanamori and Mitani / DeepProp: Extracting Deep Features from a Single Image for Edit Propagation

Table 1: Definitions of main symbols.

Symbols Descriptions
I input image.
xi image feature vector at pixel i.
gi binary vector for user strokes at pixel i.
Ω user stroke region.
XΩ set of input features xi in stroke region Ω.
GΩ set of binary vectors gi in stroke region Ω.
yi probability vector at pixel i.
Z probability map or colorized result.
U result obtained by post-processing.

θv, θs, θc, θl parameters of DNN model.
Gv, Gs, Gc, Gl layer functions of DNN model.

a single pixel. Additionally, we use pixel coordinates as low-level
spatial features. To extract the corresponding high-level spatial fea-
tures, we apply a non-linear transformation, since a convolutional
layer cannot be applied in this case. Both of the extracted high-level
features are then combined and used for edit propagation. We em-
pirically experimented with several structures of the DNN, varying
in, e.g., the sizes of convolutional kernels and the dimensions of
high-level features.

As illustrated in Figure 3, our DNN is a feedforward neural net-
work that has four structures: visual feature extractor (VFE), spatial
feature extractor (SFE), feature combiner (FC), and label estima-
tor (LE). The main notations used in this paper are summarized in
Table 1. The DNN estimates probability vector yi of user strokes
from feature vector xi = [pT

i , s
T
i]

T at pixel i in input image I. Here,
pi ∈R

9×9×c is a 9×9 patch feature centered at pixel i with c color
channels (e.g., three-channel RGB or one-channel grayscale), and
si ∈ R

2 is a pixel coordinate. Each element of input feature vec-
tors is normalized from 0 to 1. In contrast to most previous work,
determining importance of each image feature is not required. In
the following sections, we describe the role of each structure of our
DNN.

3.1. Visual feature extractor (VFE)

The VFE extracts a high-level visual feature, such as complicated
texture patterns or simple colors adapted to user strokes, from a
low-level visual patch feature p. Specifically, the VFE computes
high-level visual features fv ∈ R

256 from p using function Gv with
model parameter θv. Gv consists of two convolutional functions
fconv1 and fconv2, a max-pooling function fmp, and an activation
function of the rectifier linear unit (ReLU) :

fv = Gv(p;θv), (1)

Gv(p;θv) =

fmp(fReLU (fconv2(fmp(fReLU (fconv1(p;θconv1)));θconv2))),(2)

where fconv1 applies 128 types of 3× 3× c filter kernels k with bi-
ases b to input patch feature p. That is, fconv1 obtains 128 filtered
maps (k∗p+b) by convolving input patch features p with different
filter kernels k and biases b. Then, the ReLU activation function
fReLU (v) = [max(0,v1),max(0,v2), ...,max(0,vm)]

T is applied to
the convolved patch (where the subscripts of v denote element in-
dices of the vector). Next, we use a 2×2 max-pooling function fmp
with stride 2, which yields position invariance over the patches. We

additionally apply convolution fconv2 with a 3×3×128 kernel and
the activation function fReLU . Finally, a 2× 2 max-pooling with
stride 2 is used again and a 256-dimensional feature vector fv is
obtained. θv denotes filter parameter (i.e., filter kernels k and bias
terms b) and is learned using user strokes as training data, as ex-
plained in Section 4.

3.2. Spatial feature extractor (SFE)

The SFE extracts an abstracted feature fs ∈ R
256 from a spatial

pixel coordinate s:

fs = Gs(s;θs), (3)

Gs(s;θs) = fReLU (Wss+bs), (4)

where θs = {Ws,bs} is a model parameter of the SFE, and Ws ∈
R

256×2 and bs ∈ R
256 are a weight matrix and bias term. The di-

mension of the output feature vectors is set to 256 so that they have
the same dimension as the visual features. In the same way, the fea-
ture combiner (explained in the next section) can handle both the
visual features and spatial features fairly.

3.3. Feature combiner (FC)

The function Gc of the FC converts fv and fs extracted by the VFE
and the SFE into a single feature vector fc ∈ R

256 :

fc = Gc(fv, fs;θc), (5)

Gc(fv, fs;θc) = fReLU (Gcv(fv;θcv)+Gcs(fs;θcs)), (6)

Gcv(fv;θcv) = Wcvfv +bcv, (7)

Gcs(fs;θcs) = Wcsfs +bcs, (8)

where θc = {θcv,θcs} is a model parameter of the FC (where θcv =
{Wcv ∈ R

256×256,bcv ∈ R
256} and θcs = {Wcs ∈ R

256×256,bcs ∈
R

256}). Network structures similar to the FC have also been intro-
duced for combining multimodal features, such as image and au-
dio [NKK∗11, WJW∗14]. Such a network structure can determine
the importance of two features by capturing correlations across the
two modalities. In this paper, we utilize this structure for combining
the visual features and spatial features.

3.4. Label estimator (LE)

The function Gl of the LE estimates user stroke probability vectors
y from feature vectors fc extracted by the FC:

y = Gl(fc;θl), (9)

Gl(fc;θl) = fso f tmax(Wlfc +bl), (10)

where fso f tmax(v) = [
exp(v1)

∑n
i exp(vi)

,
exp(v2)

∑n
i exp(vi)

, ...,
exp(vn)

∑n
i exp(vi)

]T is the soft-

max function and θl = {Wl ∈ R
n×256,bl ∈ R

n} is a model pa-
rameter of the LE. The LE determines, for each off-stroke pixel,
a fractional weight for each stroke, based on the off-stroke pixel’s
similarity to pixels on the stroke. This is done using the soft-max
layer, which acts as a standard regression function for probabilistic
multi-class classification.

submitted to EUROGRAPHICS 2016.

Endo, Iizuka, Kanamori and Mitani / DeepProp: Extracting Deep Features from a Single Image for Edit Propagation 5

4. Learning DNN from User Strokes

This section explains how to learn the model parameters
(θv,θs,θc,θl) of our DNN using training data: user strokes GΩ and
input features x ∈ XΩ on stroke region Ω.

A straightforward way for learning the model parameters is to
minimize the error function E between probability vectors esti-
mated by the DNN and binary vectors gi ∈ GΩ obtained from user
strokes:

(θ̂v, θ̂s, θ̂c, θ̂l) = argmin
θv,θs,θc,θl

E(θv,θs,θc,θl), (11)

E(θv,θs,θc,θl) =

∑
i∈Ω

L(Gl(Gc(Gv(pi;θv),Gs(si;θs);θc);θl),gi), (12)

where L indicates the cross-entropy loss function defined as
L(y,g) =−∑n

k=1{gk lnyk +(1− gk) ln(1− yk)}.
Unfortunately, this naïve approach does not work in practice. Be-

cause of the structural complexity of our DNN, we need to consider
the fact that many local minima can be found in an optimization
process such as the one described above. In general, model param-
eters of feedforward neural networks are learned using the back-
propagation of error with a gradient-based optimization algorithm,
such as the stochastic gradient descent (SGD) [KB14]. However, in
our case, when the model parameters of the entire network are op-
timized simultaneously using the backpropagation, the algorithm
falls into local minima before the gradient error propagates suffi-
ciently into the deep layers of the VFE, due to the vanishing gradi-
ent problem. That is, the learning speed of the SFE is much faster
than that of the VFE because the SFE is shallow whereas the VFE
is much deeper.

To address this issue, we develop a learning algorithm for opti-
mizing the model parameters efficiently in two steps. Figure 4 illus-
trates this learning strategy. In the first step, we omit the SFE from
the DNN and optimize the deep network consisting of the VFE, FC,
and LE. Specifically, we pre-train visual features by minimizing a
new error function Ev:

(θ̂v, θ̂cv, θ̂l) = argmin
θv,θcv ,θl

Ev(θv,θcv,θl), (13)

Ev(θv,θcv,θl) =

∑
i∈Ω

Lv(Gl(Gcv(Gv(pi;θv);θcv);θl),gi), (14)

where Lv is the cross-entropy loss of the above network. We op-
timize the parameters based on gradients ∂Lv

∂θv
, ∂Lv

∂θcv
, ∂Lv

∂θl
using the

backpropagation. We initialize the model parameters with random
numbers following a normal distribution with zero mean and stan-
dard deviation equal to the inverse of the dimension of each model
parameter. For optimization, we use the mini-batch Adam algo-
rithm [KB14] because of its fast convergence. To determine con-
vergence, we check if the error in all training data is smaller than
ε|Ω| or the difference between the current error and previous error
is larger than γ|Ω| (where ε and γ are coefficients, and |Ω| is the
number of pixels in region Ω). Note that the latter condition is used
to abort optimization if it does not converge completely. In the
second step, we optimize the entire network with the SFE by ini-
tializing the DNN with the model parameters θ̂v, θ̂cv, and θ̂l learned

Each binary vector
obtained from user strokes

Minimize
loss

Minimize
loss

VFE FC LE

VFE

SFE

FC LE

(Visual feature pre-training)
1st backpropagation based on and

2nd backpropagation based on and

Use leaned parameters
for 2nd initialization

...

Figure 4: Our strategy of DNN learning. We first pre-train visual
features on the network consisting of the VFE, FC, and LE using
backpropagation, and then learn the entire network together with
the SFE.

in the first step. The model parameters θs and θcs not learned in the
first step are randomly initialized and optimized using the mini-
batch Adam algorithm in the same way as above. For optimization,
mini-batch size is empirically set to 10, and both ε and γ are set to
0.01.

As can be seen in Equations (12) and (14), the computational
complexity of the optimization w.r.t. the number of training data
|Ω| is O(|Ω|). To accelerate the learning, we subsample pixels Ω′
by 10% of Ω for optimization. Even with subsampling the learned
result is similar to the result with all data due to inherent redun-
dancy, as demonstrated in Section 6.1. Algorithm 1 summarizes
our DNN learning algorithm.

Algorithm 1 Learning DNN from user strokes
Inputs: stroke region Ω, image feature vectors xi = {pi, si} ∈
XΩ, and stroke binary vectors gi ∈ GΩ
Outputs: θv,θs,θc,θl

1: Ω′← RANDOMSAMPLING(Ω);
2: θv,θs,θc,θl ← NORMALDISTRIBUTION();
3: preEv← 0;
4: while true do
5: θv,θcv,θl ←MINIBATCHADAM(XΩ′,GΩ′ , ∂Lv

∂θv
, ∂Lv

∂θcv
, ∂Lv

∂θl
);

// Eq. (14)
6: if Ev < ε|Ω′| or Ev− preEv > γ|Ω′| then
7: break;
8: end if

preEv← Ev;
9: end while

10: preE← 0;
11: while true do
12: θv,θs,θc,θl←MINIBATCHADAM(XΩ′,GΩ′ , ∂L

∂θv
, ∂L

∂θs
, ∂L

∂θc
, ∂L

∂θl
);

// Eq. (12)
13: if E < ε|Ω′| or E− preE > γ|Ω′| then
14: break;
15: end if

preE← E;
16: end while

submitted to EUROGRAPHICS 2016.

6 Endo, Iizuka, Kanamori and Mitani / DeepProp: Extracting Deep Features from a Single Image for Edit Propagation

4.1. Efficient DNN update per user edit

Every time the user adds or removes a stroke in order to obtain a
desired result, the system has to re-learn the model parameters from
the update strokes. Naïvely re-learning from scratch is costly, and
thus accelerating the re-learning is crucial for interactive editing.

To update the model parameters efficiently, we reuse the model
parameters learned with the previous user strokes as the initializa-
tion of the learning algorithm (line 4 in Algorithm 1). To achieve
this, we need to adapt the LE structure accordingly. As shown in
Figure 5, if the total number of different types of user strokes (e.g.,
strokes that edit color for colorization) is reduced, corresponding
rows of the model parameters (i.e., the weight matrix Wl and bias
term bl) are deleted. If a new type of user stroke is introduced, we
add new rows and initialize them with random numbers following
the normal distribution.

...

...

...

=

Weight matrix

Remove
old stroke

Add
new stroke

=

=

Label estimator (LE)

Figure 5: Efficient model parameter update. If user strokes are
added or removed, model parameters of the LE are updated effi-
ciently using previous parameters.

5. Edit Propagation Using DNN

5.1. Estimating probability maps

We now propagate information from the user strokes to all pixels in
the input image using the learned DNN model. Given a patch fea-
ture and coordinate feature of each pixel, our feedforward neural
network outputs a stroke probability vector using the learned pa-
rameters. However, processing all pixels one-by-one takes a large
amount of time since the feedforward computation for one data
point includes many applications of convolution filtering.

We adopt superpixel-wise propagation to reduce the computa-
tional time. For each superpixel, a center pixel is calculated, and
then a user stroke probability is computed using the DNN model
from features calculated only at the center pixel. Finally, the same
stroke probability is assigned to all the pixels in the corresponding
superpixel. For generating superpixels, we use the simple linear it-
erative clustering (SLIC) [ASS∗12] because this algorithm can gen-
erate regularly-shaped superpixels that can reduce the gap between
shapes of superpixels and patches.

5.2. Post-processing

We refine the estimated result by post-processing, which has mainly
two roles, i.e., smoothing and interpolation. First, we can improve
the result by smoothing it across superpixels. Second, interpo-
lation can alleviate noise and halo artifacts along object bound-
aries [CZZT12, XYJ13]. Similarly to [XYJ13], we obtain a final
editing result (e.g., colorized or segmented images) U from the re-
sult Z estimated with the DNN model, by solving the following
optimization problem:

min
ui∈U

∑
i

βi||ui− zi||2 +λ∑
i

∑
j∈N(i)

φi j||ui−u j||2, (15)

βi =�{ei = 0}, (16)

where zi ∈ Z denotes the quantity being post-processed, e.g., the
stroke probability vector yi (in case the probability map itself is the
target of the post-processing) or the result computed from yi in a
specific application (e.g., color in a colorization application). ei is
binary edge at pixel i in input image I, and � is the morphological
erosion operator. λ determines the degree of smoothing, and N(i)
is a set of neighbor pixels of pixel i. We can use several types of
weighting coefficients φi j that represent relations between neighbor
pixels, such as the affinity function [LLW04] based on similarity of
pixel values based on similarity of pixel values (when considering
pixel gradient information) and matting Laplacian [LRAL07] for
matting. In our experiment, λ is set to 5 for all images. To solve
this linear system, we use the Gauss-Seidel method because of its
simplicity of implementation. Finally, Algorithm 2 summarizes our
edit propagation using the DNN model.

Algorithm 2 Edit propagation using DNN
Inputs: input image I, image feature vectors xi = {pi, si},
learned DNN parameters θv,θs,θc, and θl
Output: final editing result U

1: Ωs← EXTRACTSUPERPIXEL(I);
2: for each superpixel S ∈ Ωs do
3: k← EXTRACTCENTERPIXEL(S);
4: yk← Gl(Gc(Gv(pk;θv),Gs(sk;θs);θc);θl);
5: Z← ASSIGNRESULTTOSUPERPIXEL(S,yk);
6: end for
7: U ← POSTPROCESSUSINGOPTIMIZATION(I,Z);

6. Experiments

We implemented our prototype system with C++ and the
OpenCV2.4.9 library except for deep learning. For implementing
deep learning, we used Python and the chainer library. The sys-
tem was run on a PC equipped with a 2.80 GHz CPU and 8 GB of
memory. The image sizes we used in this paper, the number of user
strokes (total pixels), and computational times of our method are
summarized in Table 2. As can be seen in the table, the results of
Figure 1 and the lower center of Figure 10 took longer than most
of the others. This is because the convolutional layers require sub-
stantial learning to extract effective visual features such as textures
from little available information (i.e., 1-channel grayscale values).
We also tested with the high-resolution image in Figure 6 in our
experiments. Although it took the longest, the time needed for that
image is relatively short given that the number of pixels is tens of
times larger than the other images. This is because only pixels on

submitted to EUROGRAPHICS 2016.

Endo, Iizuka, Kanamori and Mitani / DeepProp: Extracting Deep Features from a Single Image for Edit Propagation 7

Input image and user strokes Without visual feature pre-training With visual feature pre-training

Figure 6: Comparisons of recolorization results without and with visual feature pre-training.

Table 2: Total amount of inputs and computational times (seconds)
of our method on CPU.

Images Image sizes
of user strokes
(# of total pixels) Times

Fig.1 620× 413 20 (7701) 97.4
Fig.2 400× 314 10 (1818) 23.0
Fig.6 top 392× 70 3 (1882) 18.3
Fig.6 bottom 1800× 1200 19 (17964) 432.4
Fig.10 top 480× 360 4 (2457) 22.4
Fig.10 upper center 640× 480 5 (3208) 36.5
Fig.10 lower center 500× 375 13 (20342) 271.6
Fig.10 bottom 640× 427 9 (3285) 40.0
Fig.12 top 400× 285 4 (5353) 36.1
Fig.12 center 400× 267 8 (9666) 49.9
Fig.12 bottom 400× 280 3 (6940) 39.3

strokes are used for learning and superpixels are used for estima-
tion.

6.1. Evaluation of proposed method

Before comparing our method to previous work, we evaluate our
method itself.

Learning algorithm. We first evaluate effectiveness of the pro-
posed learning algorithm for our DNN. Figure 6 shows compar-
isons of image recoloring results with and without the visual feature
pre-training. Without this, the visual features (texture patterns or
color) were not sufficiently learned from the image, and the image
edits propagated too strongly, only relying on the spatial features.
This means that the optimization process fell into the local mini-
mum before the gradient of the error function sufficiently propa-
gated to the network of the VFE. Specifically, in the upper-center
image in the figure, the specified colors (pink and blue) are leak-
ing across the different textures because texture features are not
extracted sufficiently. Also, in the red box of the lower-center im-
age, the color specified with the green stroke did not propagated
according to the texture patterns of the center of the sunflower, due
to the same reason. By contrast, we can see that using our learning
algorithm with visual feature pre-training alleviates these problems
in the right images.

Input image and
user strokes

7.1 sec. 7.1 sec.

37.0 sec. 19.8 sec.

5.9 sec. 2.5 sec.

add stroke

remove strokes

w/o update w/ update

Figure 7: Comparison of colorization results without (w/o) and
with (w/) updating parameters. The caption under each result
shows computational time of learning.

Updating algorithm. We evaluate the effectiveness of the algo-
rithm for updating the model parameters in Figure 7, where we
compare the editing results and computational times of learning
without and with update. When we do not use the updating al-
gorithm, model parameters are learned from scratch every time
strokes are added or removed. As can be seen in the figure, there is
almost no difference between the two results, whereas the compu-
tational times with update become about half of the others.

Training data size. Figure 8 shows the editing results and compu-
tational times of learning with different amounts of training data.
As shown in the figure, the results almost converged when we used
equal to or more than 10% of the training data on the strokes, and
computational times were linearly reduced according to the amount

submitted to EUROGRAPHICS 2016.

8 Endo, Iizuka, Kanamori and Mitani / DeepProp: Extracting Deep Features from a Single Image for Edit Propagation

1%, 12.3 sec. 5%, 55.5 sec.

10%, 78.3 sec. 20%, 228.8 sec.

Figure 8: Results with training data of different ratio. The input
image and user strokes are the same as Figure 1. The caption under
each image shows the percentage of samples of training data (left)
and computational time of learning (right).

of the training data. Although it is generally known that deep learn-
ing requires a large amount of training data, in fact, a few hundreds
of instances per one category are sufficient for learning models in
some image recognition tasks [WYHY15]. Given this fact and the
experimental results, we can confirm that our method works well
with relatively little training data, and only a few types of user
strokes.

Superpixel-based estimation. Figure 9 shows the editing results
and computational times of estimating with different numbers of
superpixels. In this example, the results are visually indistinguish-
able even when the number of superpixels decreases to 1% of the
total image pixels. However, the computational times are signifi-
cantly reduced according to the number of superpixels. Only when
the number of superpixels is 0.1% of the total image pixels, the re-
sult starts deteriorating. This is because the superpixels become too
large to fit the object shape. On the other hand, computational times
were almost unchanged when less than 1% were used: of the total
reported time, 4 seconds are due to the post-processing, which can
be accelerated by using more efficient solvers.

6.2. Comparison with previous methods

To verify the effectiveness of our feature extraction method, we
compare our method with the handcrafted feature-based methods.

6.2.1. Compared features

We prepared the following image features used in previous work.

• color feature: three (or one)-dimensional RGB (or grayscale)
vectors c.

• spatial feature: two-dimensional pixel coordinate vectors s.
• patch feature: 243 (or 81)-dimensional vectors p of 9× 9 RGB

(or grayscale) patches.
• texture feature: 40-dimensional vectors t obtained by applying

the Gabor filter [Dau85, CZL∗14].

100%, 26.5 sec. 10%, 12.0 sec.

2%, 6.2 sec. 1%, 4.8 sec. 0.1%, 4.1 sec.

Input image & user strokes

Figure 9: Results with different number of superpixels. The caption
under each image shows the percentage of the number of superpix-
els to that of the original image pixels (left) and computational time
of estimation and post-processing (right).

• dense SIFT feature: 128-dimensional vectors d that are scale-
invariant feature transform (SIFT) features [Low99] on each
pixel.

For the texture features, we selected the parameters of the Ga-
bor filter, i.e., kernel size, wavelength of the sinusoidal factor,
spatial aspect ratio, phase offset, standard deviation of the gaus-
sian envelope, and kernel orientation as 30 × 30, π, 1, π/2,
{1,2,3,4,5}, and {0,π/8,2π/8,3π/8,4π/8,5π/8,6π/8,7π/8},
respectively, and consequently 40-dimensional vectors were
obtained. We concatenated these features and used x =
[σccT ,σssT ,σppT ,σttT ,σddT]T in the comparisons with previous
methods. The experiments were conducted by adjusting the impor-
tance of each feature σc,σs,σp,σt , and σd . As mentioned above,
the proposed method uses x = [pT , sT]T as input feature and we do
not manually adjust the importance of them.

6.2.2. Results

The state-of-the-art for edit propagation is the sparse control model
(SCM) [XYJ13] except for methods that focus on acceleration and
memory efficiency. Given that comparisons with other edit propa-
gation methods have been conducted in the SCM paper [XYJ13],
and the fact that this paper focused mainly on feature extraction,
we only compare our method to SCM and instant propagation
(IP) [LJH10], which is closely related to SCM, using our own im-
plementations.

Colorization and recoloring. Figure 10 shows comparisons of
image recoloring and colorization between our method (DNN) and
the previous methods with different parameters. The color of each
pixel is computed as the probability-weighted average of the ab
channels of each stroke in Lab color space using the probability
maps obtained by our DNN. The colorized results are then post-
processed. The parameters are shown at the bottom of the figure
and correspond to results in each column. First, the result of our
DNN obviously outperformed the leftmost results, which were ob-
tained via the previous methods but using the same features as ours,
i.e., patch and spatial features. Second, the use of all features in the
previous methods tends to deteriorate the estimated results due to

submitted to EUROGRAPHICS 2016.

Endo, Iizuka, Kanamori and Mitani / DeepProp: Extracting Deep Features from a Single Image for Edit Propagation 9

= 1,
= 0, = 0)

[L
JH

10
]

O
ur

 D
N

N
In

pu
t i

m
ag

e
&

 u
se

r s
tro

ke
s

= 1,
= 1, = 1)

= 0,
= 0, = 0)

= 0,
= 0, = 0)

= 0,
= 1, = 1)

O
ur

 D
N

N
In

pu
t i

m
ag

e
&

 u
se

r s
tro

ke
s

O
ur

 D
N

N
In

pu
t i

m
ag

e
&

 u
se

r s
tro

ke
s

[L
JH

10
]

[L
JH

10
]

[X
Y

J1
3]

O
ur

 D
N

N
In

pu
t i

m
ag

e
&

 u
se

r s
tro

ke
s

[L
JH

10
]

[X
Y

J1
3]

[X
Y

J1
3]

[X
Y

J1
3]

Figure 10: Comparisons of color image recoloring and grayscale image colorization. For the existing methods, the feature parameters used
in each column are shown in the bottom.

the over-fitting. Third, it is difficult to handle some images even if
individual features are selectively used. In contrast to these results,
our method can generate better results than the previous methods
overall. This means that, from low-level patch and coordinate fea-
tures, our method extracted stroke-adapted high-level features that
are effective for edit propagation, without manual feature selection.

Foreground segmentation. We compared results of foreground

segmentation using 50 images randomly selected from MSRA 1k
dataset [AHES09]. We quantitatively evaluate the methods via a
precision-recall (PR) curve, which is often used for saliency de-
tection [WLRY15]. While precision indicates the ratio of ground-
truth pixels among pixels estimated as foreground, recall indicates
the ratio of pixels estimated as foreground among all the ground-
truth pixels. To extract foreground regions, we segmented probabil-
ity maps using a threshold. PR curves were plotted with precision

submitted to EUROGRAPHICS 2016.

10 Endo, Iizuka, Kanamori and Mitani / DeepProp: Extracting Deep Features from a Single Image for Edit Propagation

Input image and
user strokes Ground truth Our DNN[LJH10] [XYJ13]

Figure 12: Comparisons of several results of foreground segmentation selected from MSRA 1k dataset [AHES09]. Each segmented result is
visualized by binarizing a probability map using a threshold (50%).

(a) (b)

Figure 11: (a) Micro average PR curve that shows comparisons of
foreground segmentation using 50 images randomly selected from
MSRA 1k dataset [AHES09]. (b) Magnified PR curve.

and recall obtained using different thresholds. We specified fore-
ground and background manually using strokes on each image and
used the same strokes for all of the methods with the fixed feature
parameters that were used in several of the results of [LJH10], i.e.,
σc = 1/0.2 = 5 and σs = 1. As summarized in the PR curve in
Figure 11 and Table 3, our method overall outperforms the existing
methods. Figure 12 also shows some results that are difficult for
the existing methods to segment with only color information, that
is, when the foreground and background colors are very similar.
Although we tried to increase the importance of the texture fea-
tures in the existing methods, over-fitting problems occurred and
results degenerated in some cases. While the results of the existing
methods might be improved if the feature parameters are tuned in-
tensively, our method can generate relatively good results without
this process.

As shown in Figures 1 and 10, the two existing methods propa-

Table 3: Macro average precision, recall, and F1± standard devi-
ation for binarization of probability maps using a threshold (50%)
on the 50 images. Results marked with ’*’ show statistically signif-
icant differences between our method and the others as measured
by paired t-test.

Method Precision Recall F1
[LJH10] 0.905 ± 0.113 0.900 ± 0.168 0.885 ± 0.145
[XYJ13] 0.900±0.131 0.892 ± 0.115 0.887 ± 0.099
Our DNN 0.945 ± 0.060* 0.940 ± 0.065 0.940 ± 0.048**

∗ : p < 0.05, ∗∗ : p < 0.01

gate image edits based on different points of view. That is, IP esti-
mates stroke probabilities smoothly, whereas SCM estimates them
discriminatively. As explained in [XYJ13], SCM is based on iter-
ative feature discrimination and associates each pixel with only a
part of the control samples. For example, SCM can clearly prop-
agate different image edits to neighbor objects that have similar
color by discriminating the spatial features, even if the importance
of these features is somewhat small. However, it is difficult to take
advantage of this method unless appropriate features are selected
and the importance of them is appropriately determined. Our focus
is to address this problem, which was demonstrated in this section.
It is an interesting avenue for future work to integrate deep features
into the existing edit propagation methods.

6.3. User study

We also conducted a user study to validate whether users can gen-
erate plausible results using our system in as few attempts as possi-
ble. We recruited eight users, six novice and two experienced users
in image processing. The four images used in this study were Fig-
ures 1, 2, and 10 top and upper center. For each image, we showed

submitted to EUROGRAPHICS 2016.

Endo, Iizuka, Kanamori and Mitani / DeepProp: Extracting Deep Features from a Single Image for Edit Propagation 11

(a) Quality (b) Number of trial and error

*: p < 0.05, **: p < 0.01, ***: p < 0.001

0
1
2
3
4
5

Task 1 Task 2 Task 3 Task 4

E
va

lu
at

io
n

sc
or

e

Our DNN [XYJ13]
*** ** *** ***

0

1

2

3

Task 1 Task 2 Task 3 Task 4

of

 tr
ia

l a
nd

 e
rr

or

**** *

Figure 13: Results of user study. Error bars show the standard de-
viation, and results marked with ’*’ show statistically significant
differences as measured by paired t-test.

sample results to the users and asked them to conduct the follow-
ing tasks using our system and SCM [XYJ13], allowing them up to
three trials until they are satisfied:

• Task 1 (Fig. 2): recolor groups of flower petals at different loca-
tions with the same colors.

• Task 2 (Fig. 10 upper center): recolor each type of cookies.
• Task 3 (Fig. 10 top): recolor only the peels of the pear.
• Task 4 (Fig. 1): colorize each object such as leaves, woods, and

a cat.

Before conducting these tasks, we briefly explained how to use the
systems and the image features to the users, and they practiced for
about five minutes using other images such as Figure 6 top. Be-
cause the users might get used to editing the same image from the
second time, we divided the users into two groups and shuffled the
orders of images and methods for each group. For SCM, we lim-
ited the appropriate ranges of the feature weights from zero to five
in order to avoid eccentric feature weights. The number of trials
were recorded, and the resulting images were evaluated by another
11 evaluators using a subjective score ranging from one to five, as
summarized in Figure 13. Thanks to the tuning-free characteristic
of our system, the number of trials for the editing was typically
around two, which was less than that of SCM. Additionally, the
quality of resultant images using our system consistently outper-
forms that of the existing method.

7. Discussion and Future Work

Other possible approaches. In the context of the proposed
method, it is possible to consider two other approaches: (1) data-
driven pre-training and (2) network expansion.

As for (1), in several applications for computer vision, DNNs are
pre-trained using datasets containing a large number of general im-
ages such as ImageNet [DDS∗09] before training on data for spe-
cific tasks [LY15,LSL15]. This improves the generalization ability
of models and accuracy on the tasks. In contrast, our method does
not use such data-driven approaches. Nevertheless, it successfully
generates several image editing results. It is not clear that data-
driven pre-training would improve the task handled in this paper
because learned features strongly depend on the variously defined
user strokes. Additionally, applying such pre-trained models to our
task is not straightforward because existing pre-trained models are
designed for image-level classification, but our task is pixel-level
classification. For example, Network in Network (NIN) [LCY13]

Figure 14: Results with NIN model instead of our VFE. The same
input image and user strokes are used for each image in Figures 1,
2, 10 top and upper center.

and AlexNet [KSH12] require a relatively-large image as input, that
is, an image of 227× 227 pixels in order to classify the image as
"scenery", "objects", or "animals", etc. On the other hand, our task
needs to classify individual pixels in a single image, and thus we
used relatively-small 9× 9 image patches as input. If we were to
disregard this essential difference and still integrate a pre-trained
model into our framework, a naïve way would be to simply replace
our VFE with a pre-trained model. We conducted such an experi-
ment with NIN, which is a lightweight pre-trained model using Im-
ageNet and whose performance is sometimes slightly better than
AlexNet in image classification tasks. Specifically, we used NIN
without its classification layer, which outputs 1000-dimensional
feature vectors from input images, and fixed its model parameters
during a learning session in order to leverage pre-trained features.
Because NIN (and also AlexNet) requires images of 227×227 pix-
els, we magnified 9×9 input patches to 227×227 patches and fed
these large patches to NIN. As clearly shown in Figure 14, the NIN
model cannot appropriately capture visual features. Even worse,
this approach took a significantly longer time (five minutes on av-
erage) despite the fact that the NIN model is lightweight one, as this
network has a too deep structure for our task. Because such data-
driven approaches are out of the scope of our research question, we
consider such problems as future work.

As for (2), it is interesting to use more wide-scale networks, and
we tried to use DNNs with deeper layers and larger kernels. How-
ever, there were no significant changes in results while the compu-
tational time increased when we used images with up to 2M pixels
in our experiments. If we use larger images, a network that auto-
matically changes its scale according to image sizes could possibly
improve editing results.

GPU acceleration. Most of the modules in our system can be
accelerated using parallel computation on GPU. To this end, the
GPU-based SLIC algorithm for generating superpixels was pro-
posed [RR11], linear solvers for the post-processing was also ac-
celerated [JCVV09], and learning and estimation algorithms for

submitted to EUROGRAPHICS 2016.

12 Endo, Iizuka, Kanamori and Mitani / DeepProp: Extracting Deep Features from a Single Image for Edit Propagation

DNNs were parallelized [LNC∗11]. The chainer library we used
makes GPU implementation easy, and thus we tried to use GPU ac-
celeration for deep learning with our method. The algorithm on PC
with NVIDIA GeForce GTX 760 was about five times faster than
CPU implementation. For high resolution images, our system may
provide instant feedback with a low resolution result as a preview
during editing sessions. We would like to accelerate our system for
more interactive editing in the future.

8. Conclusion

We have proposed DeepProp, which achieves various image ed-
its from only simple user strokes using deep leaning. As for our
research question, we conclude that, without manual feature selec-
tion, effective features for edit propagation can be automatically
extracted by (i) deep learning from sparse user inputs in a sin-
gle image and (ii) efficiently learning the DNN in order to avoid
falling into undesirable local solutions due to the vanishing gradi-
ent problem. Our edit propagation system using deep features has
generated better results than previous work in several applications
such as grayscale image colorization, image recoloring, and fore-
ground segmentation. In the future, we plan to try the data-driven
approaches for learning DNNs, design more flexible DNN struc-
tures to handle various images, and accelerate our system for more
interactive editing.

Acknowledgements

We would like to thank Dr. Olga Diamanti for proofreading our
paper. We also thank anonymous reviewers for their insightful sug-
gestions. Yoshihiro Kanamori is funded by JSPS Postdoctoral Fel-
lowships for Research Abroad.

References
[AHES09] ACHANTA R., HEMAMI S., ESTRADA F., SUSSTRUNK S.:

Frequency-tuned Salient Region Detection. In CVPR 2009 (2009),
pp. 1597 – 1604. 9, 10

[AP08] AN X., PELLACINI F.: AppProp: All-pairs appearance-space edit
propagation. In ACM SIGGRAPH ’08 (2008), pp. 40:1–40:9. 1, 3

[ASS∗12] ACHANTA R., SHAJI A., SMITH K., LUCCHI A., FUA P.,
SUSSTRUNK S.: SLIC superpixels compared to state-of-the-art super-
pixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 11 (Nov.
2012), 2274–2282. 6

[Ben09] BENGIO Y.: Learning deep architectures for AI. Found. Trends
Mach. Learn. 2, 1 (Jan. 2009), 1–127. 2, 3

[BHW11] BIE X., HUANG H., WANG W.: Real time edit propagation
by efficient sampling. Comput. Graph. Forum 30, 7 (2011), 2041–2048.
3

[BLP∗07] BENGIO Y., LAMBLIN P., POPOVICI D., LAROCHELLE H.,
MONTREAL U. D., QUEBEC M.: Greedy layer-wise training of deep
networks. In In NIPS (2007), MIT Press. 3

[BPD09] BOUSSEAU A., PARIS S., DURAND F.: User-assisted intrinsic
images. In ACM SIGGRAPH Asia ’09 (2009), pp. 130:1–130:10. 2

[CLKL14] CHO H., LEE H., KANG H., LEE S.: Bilateral texture filter-
ing. ACM Trans. Graph. 33, 4 (July 2014), 128:1–128:8. 2

[CSRP10] CRIMINISI A., SHARP T., ROTHER C., P’EREZ P.: Geodesic
image and video editing. ACM Trans. Graph. 29, 5 (2010), 134:1–
134:15. 3

[CZL∗14] CHEN X., ZOU D., LI J., CAO X., ZHAO Q., ZHANG H.:
Sparse dictionary learning for edit propagation of high-resolution im-
ages. In CVPR 2014 (2014), pp. 2854–2861. 1, 2, 3, 8

[CZZT12] CHEN X., ZOU D., ZHAO Q., TAN P.: Manifold preserving
edit propagation. ACM Trans. Graph. 31, 6 (2012), 132:1–132:7. 1, 6

[Dau85] DAUGMAN J. G.: Uncertainty relation for resolution in space,
spatial frequency, and orientation optimized by two-dimensional visual
cortical filters. J. Opt. Soc. Am. A 2, 7 (1985), 1160–1169. 8

[DDS∗09] DENG J., DONG W., SOCHER R., LI L.-J., LI K., FEI-FEI
L.: ImageNet: A Large-Scale Hierarchical Image Database. In CVPR
’09 (2009). 11

[DLH∗13] DENG L., LI J., HUANG J., YAO K., YU D., SEIDE F.,
SELTZER M. L., ZWEIG G., HE X., WILLIAMS J., GONG Y., ACERO
A.: Recent advances in deep learning for speech research at microsoft.
In IEEE ICASSP ’13 (2013), pp. 8604–8608. 2, 3

[FFL10] FARBMAN Z., FATTAL R., LISCHINSKI D.: Diffusion maps
for edge-aware image editing. ACM Trans. Graph. 29, 6 (Dec. 2010),
145:1–145:10. 3

[GBB11] GLOROT X., BORDES A., BENGIO Y.: Deep sparse rectifier
neural networks. In AISTATS ’11 (2011), Gordon G. J., Dunson D. B.,
(Eds.), vol. 15, pp. 315–323. 3

[JCVV09] JOST T., CONTASSOT-VIVIER S., VIALLE S.: An efficient
multi-algorithms sparse linear solver for GPUs. In ParCo2009 (Lyon,
France, Sept. 2009). 11

[KB14] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion. CoRR abs/1412.6980 (2014). 5

[KSH12] KRIZHEVSKY A., SUTSKEVER I., HINTON G. E.: ImageNet
classification with deep convolutional neural networks. In Advances in
Neural Information Processing Systems 25. 2012, pp. 1097–1105. 2, 3,
11

[LAA08] LI Y., ADELSON E., AGARWALA A.: Scribbleboost: Adding
classification to edge-aware interpolation of local image and video ad-
justments. In EGSR ’08 (2008), pp. 1255–1264. 1, 2, 3

[LCY13] LIN M., CHEN Q., YAN S.: Network in network. CoRR
abs/1312.4400 (2013). 11

[LFUS06] LISCHINSKI D., FARBMAN Z., UYTTENDAELE M.,
SZELISKI R.: Interactive local adjustment of tonal values. ACM Trans.
Graph. 25, 3 (July 2006), 646–653. 2

[LGQ15] LANE N. D., GEORGIEV P., QENDRO L.: DeepEar: Robust
smartphone audio sensing in unconstrained acoustic environments using
deep learning. In UbiComp ’15 (2015), pp. 283–294. 3

[LJH10] LI Y., JU T., HU S.-M.: Instant propagation of sparse edits on
images and videos. Comput. Graph. Forum 29, 7 (2010), 2049–2054. 1,
3, 8, 10

[LLW04] LEVIN A., LISCHINSKI D., WEISS Y.: Colorization using op-
timization. ACM Trans. Graph. 23, 3 (Aug. 2004), 689–694. 1, 2, 6

[LNC∗11] LE Q. V., NGIAM J., COATES A., LAHIRI A., PROCHNOW
B., NG A. Y.: On optimization methods for deep learning. In ICML
(2011), pp. 265–272. 12

[Low99] LOWE D. G.: Object recognition from local scale-invariant fea-
tures. In ICCV ’99 (1999), pp. 1150–1157. 8

[LRAL07] LEVIN A., RAV-ACHA A., LISCHINSKI D.: Spectral matting.
In CVPR (2007), IEEE Computer Society. 2, 6

[LSL15] LIU F., SHEN C., LIN G.: Deep convolutional neural fields for
depth estimation from a single image. In CVPR 2015 (June 2015). 3, 11

[LWA∗12] LANG M., WANG O., AYDIN T., SMOLIC A., GROSS M.:
Practical temporal consistency for image-based graphics applications.
ACM Trans. Graph. 31, 4 (July 2012), 34:1–34:8. 3

[LWCO∗07] LUAN Q., WEN F., COHEN-OR D., LIANG L., XU Y.-Q.,
SHUM H.-Y.: Natural image colorization. In EGSR ’07 (2007), pp. 309–
320. 1, 2

submitted to EUROGRAPHICS 2016.

Endo, Iizuka, Kanamori and Mitani / DeepProp: Extracting Deep Features from a Single Image for Edit Propagation 13

[LY15] LI G., YU Y.: Visual saliency based on multiscale deep features.
In CVPR 2015 (June 2015). 3, 11

[MCY∗13] MUSIALSKI P., CUI M., YE J., RAZDAN A., WONKA P.: A
framework for interactive image color editing. Vis. Comput. 29, 11 (Nov.
2013), 1173–1186. 3

[NKK∗11] NGIAM J., KHOSLA A., KIM M., NAM J., LEE H., NG
A. Y.: Multimodal deep learning. In ICML (2011), pp. 689–696. 4

[PL07] PELLACINI F., LAWRENCE J.: AppWand: Editing measured ma-
terials using appearance-driven optimization. ACM Trans. Graph. 26, 3
(July 2007). 2

[QWH06] QU Y., WONG T.-T., HENG P.-A.: Manga colorization. ACM
Trans. Graph. 25, 3 (July 2006), 1214–1220. 2

[RR11] REN C. Y., REID I.: gSLIC: a real-time implementation of SLIC
superpixel segmentation. Tech. rep., University of Oxford, Department
of Engineering Science, 2011. 11

[RRW∗09] RHEMANN C., ROTHER C., WANG J., GELAUTZ M.,
KOHLI P., ROTT P.: A perceptually motivated online benchmark for
image matting. In CVPR ’09 (2009), pp. 1826–1833. 2

[SCXP15] SUN J., CAO W., XU Z., PONCE J.: Learning a convolu-
tional neural network for non-uniform motion blur removal. In CVPR
’15 (2015). 3

[SWW∗15] SHEN W., WANG X., WANG Y., BAI X., ZHANG Z.: Deep-
contour: A deep convolutional feature learned by positive-sharing loss
for contour detection. In CVPR ’15 (June 2015). 3

[WJW∗14] WU Z., JIANG Y.-G., WANG J., PU J., XUE X.: Exploring
inter-feature and inter-class relationships with deep neural networks for
video classification. In ACM MM ’14 (2014), pp. 167–176. 4

[WLRY15] WANG L., LU H., RUAN X., YANG M.-H.: Deep networks
for saliency detection via local estimation and global search. In CVPR
’15 (June 2015). 9

[WYHY15] WU J., YU Y., HUANG C., YU K.: Deep multiple instance
learning for image classification and auto-annotation. In CVPR 2015
(2015). 8

[XLJ∗09] XU K., LI Y., JU T., HU S.-M., LIU T.-Q.: Efficient affinity-
based edit propagation using k-d tree. In ACM SIGGRAPH Asia ’09
(New York, NY, USA, 2009), pp. 118:1–118:6. 1, 3

[XLXJ11] XU L., LU C., XU Y., JIA J.: Image smoothing via l0 gradient
minimization. ACM Trans. Graph. 30, 6 (Dec. 2011), 174:1–174:12. 2

[XWT∗09] XU K., WANG J., TONG X., HU S.-M., GUO B.: Edit prop-
agation on bidirectional texture functions. Computer Graphics Forum
28, 7 (2009), 1871–1877. 1, 2

[XXY∗15] XIAO T., XU Y., YANG K., ZHANG J., PENG Y., ZHANG Z.:
The application of two-level attention models in deep convolutional neu-
ral network for fine-grained image classification. In CVPR ’15 (2015).
3

[XYJ13] XU L., YAN Q., JIA J.: A sparse control model for image and
video editing. ACM Trans. Graph. 32, 6 (Nov. 2013), 197:1–197:10. 1,
3, 6, 8, 10, 11

[YS06] YATZIV L., SAPIRO G.: Fast image and video colorization using
chrominance blending. IEEE Transactions on Image Processing 15, 5
(2006), 1120–1129. 2

[YY15] YATAGAWA T., YAMAGUCHI Y.: Sparse pixel sampling for ap-
pearance edit propagation. The Visual Computer 31, 6-8 (2015), 1101–
1111. 1, 3

[YZW∗15] YAN Z., ZHANG H., WANG B., PARIS S., YU Y.: Automatic
photo adjustment using deep neural networks. ACM Transactions on
Graphics (2015). 3

submitted to EUROGRAPHICS 2016.

