
Predicting Destinations from Partial Trajectories
Using Recurrent Neural Network

Yuki Endo, Kyosuke Nishida, Hiroyuki Toda, Hiroshi Sawada

NTT Service Evolution Laboratories, NTT Corporation,
1-1 Hikarinooka, Yokosuka-shi, Kanagawa-ken, 239-0847, Japan

endo-wop@hotmail.co.jp,
{nishida.kyosuke, toda.hiroyuki, sawada.hiroshi}@lab.ntt.co.jp

Abstract. Predicting a user’s destinations from his or her partial move-
ment trajectories is still a challenging problem. To this end, we employ
recurrent neural networks (RNNs), which can consider long-term depen-
dencies and avoid a data sparsity problem. This is because the RNNs
store statistical weights for long-term transitions in location sequences
unlike conventional Markov process-based methods that count the num-
ber of short-term transitions. However, how to apply the RNNs to the
destination prediction is not straight-forward, and thus we propose an
efficient and accurate method for this problem. Specifically, our method
represents trajectories as discretized features in a grid space and feeds
sequences of them to the RNN model, which estimates the transition
probabilities in the next timestep. Using these one-step transition prob-
abilities, the visiting probabilities for the destination candidates are ef-
ficiently estimated by simulating the movements of objects based on
stochastic sampling with an RNN encoder-decoder framework. We eval-
uate the proposed method on two different real datasets, i.e., taxi and
personal trajectories. The results demonstrate that our method can pre-
dict destinations more accurately than state-of-the-art methods.

1 Introduction

Mobile devices equipped with a GPS sensor enable us to easily collect location
information on moving objects, known as trajectories. Predicting future destina-
tions from their current trajectories is crucial for various location-based services
such as personal navigation systems and ride sharing services. For example, it is
more effective to deliver advertisements on sightseeing places around the desti-
nations rather than advertisements on the current places.

To predict destinations from a partial trajectory, existing methods model the
movement tendencies by using data-driven approaches and have achieved satis-
factory results in some applications [7, 19, 14, 13]. In particular, they are based
on relatively low-order Markov processes, which count the number of transi-
tions of short sequences in historical trajectories to alleviate a data sparsity
problem. However, the ability to learn long-term dependencies between a des-
tination and long sequences towards the destination is important for accurate

2 Lecture Notes in Computer Science: Authors’ Instructions

(ii)

(iii)

(iv)

(v)

(vii)

(vi)(i) (viii)

Query trajectory

Historical trajectory Current position

(ix)

Destination candidate

Fig. 1. Our destination prediction problem. Given a query trajectory, our method
predicts top-k destinations on the basis of only historical trajectories. E.g., given T 1

q ,
it iterates one-step ahead predictions, starting from the cell (vi), to derive multi-step
ahead predictions such as the cell (ix).

prediction because individuals move through the same area with different con-
texts (challenge 1). Figure 1 shows an example. We use a grid space because
such discretized information is useful for modeling changes in trajectories. Given
query trajectories T 1

q , T
2
q , and T 3

q , the task is to predict likely destinations, on
the basis of historical trajectories T 1, T 2, and T 3. For example, given T 1

q , cell
(ix) is the location that the user is most likely to visit. To compute this, Markov
processes first calculate the transition probabilities from the current location
(vi) to the subsequent locations (v), (vii), and (viii) for each query trajectory. If
we assume a first-order Markov process for T 1

q , we can compute the transition
probabilities P (v|T 1

q) = P (vii|T 1
q) = P (viii|T 1

q) = 0.33 by counting the same
transitions in the historical trajectories. Meanwhile, if we assume a second-order
one, P (vii|T 1

q) = P (viii|T 1
q) = 0.5 , and a fourth-order one can narrow down the

candidates, that is, P (viii|T 1
q) = 1. However, high-order Markov processes cause

the data sparsity problem (challenge 2). For example, when a user departs an-
other place, like in T 2

q , or takes a detour, like in T 3
q , P (vii|T 2

q) and P (vii|T 3
q)

are not calculable in the fourth-order one. These two challenges lie in modeling
the movements of specific individuals and also unknown individuals such as taxi
users.

To overcome these two challenges, we exploit a recurrent neural network
(RNN) [12], which can store sequential information in hidden layers. In order
to model the transition information consisting of location points by using an
RNN model, we represent the sequence of locations in a discretized grid space
and let the model learn transitions from one cell to the next in each timestep.
Different from the other count-based models, the RNN embeds sequences of
sparse representations of cell locations into dense vectors consisting of statistical
weights for the sequence of locations. The RNN can also handle variable lengths
of trajectories without a strict built-in limit. These characteristics are useful for
avoiding the data sparsity problem.

Specifically, the contributions in this paper are summarized as follows:

Title Suppressed Due to Excessive Length 3

– Location sequence modeling for movement trajectories using an RNN archi-
tecture, which can learn long-term dependencies of trajectories as well as
alleviate the data sparsity problem.

– Efficient and effective destination prediction algorithm with an RNN encoder-
decoder framework using voting-based sampling simulation.

– Extensive evaluation using taxi and personal trajectories, in which our method
produced overall improvements on the previous work in terms of predictive
accuracy and distance error.

2 Related Work

Several studies have focused on the problem of destination prediction using ex-
ternal information such as trip time distribution [7, 8, 6] and road conditions [19].
Although external information is often useful to improve predictive accuracy, it
is costly to obtain.

As a method that takes only trajectory data, Xue et al. [14, 13] proposed Sub-
Trajectory Synthesis (SubSyn) algorithm. This algorithm first estimates every
transition probability in a grid space by using sub-trajectories based on low-order
Markov process. Given a query trajectory, the algorithm then estimates visiting
probabilities for destination candidates by using the transition probabilities from
the starting and current locations to the candidates. Although their method
efficiently alleviates the data sparsity problem, modeling transitions based on
low-order Markov processes is not sufficient in terms of predictive accuracy for
trajectories with diverse and long movements.

Brébisson et al. [1] formulated the destination prediction as a regression prob-
lem and solved it by using a multilayer perceptron (MLP). Their method assumes
that the location of a destination can be represented as a linearly weighted com-
bination of popular destination clusters, and the weights are computed using
the MLP. Because the number of dimensions of the input of the MLP must be
fixed, the oldest five points and newest five points in each trajectory are fed
to the MLP. While their sequence-to-point prediction can minimize the overall
distance error in dense areas of the training data, accurately predicting destina-
tions is difficult especially in areas where trajectories are sparse. Furthermore,
unlike the SubSyn algorithm [14, 13] and ours, theirs is designed for predicting
a single destination; it does not output multiple top k results. Although they
also tried to use RNNs based on this method but it did not outperformed their
MLP-based method.

Recently, another RNN-based model [9] was proposed and achieved satisfac-
tory results in the task of the next location prediction based on check-in history.
However, their model is not suitable for the multi-step prediction based on tra-
jectory data. That is, while a next destination can be directly computed by
considering a single transition for check-in data, transitions between multiple
location points on the routes from a current location to a destination must be
considered for trajectory data. Our focus in this paper is to efficiently predict
destinations from trajectory data, which are collected at shorter intervals and
enable earlier prediction than check-in data.

4 Lecture Notes in Computer Science: Authors’ Instructions

Embed

Hidden layer (LSTM)

One-hot representation
Input: location

at timestep t

Create

RNN

Output: transition probabilities at timestep t+1

[…,0, 1, 0, 0, 0, …]

[…,0, 0.1, 0.5, 0.2, 0.2, …]0.1 0.5 0.2 0.20

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

……

Soft-max

… …

Fig. 2. Modeling transitions in trajectories using the RNN.

3 Method

Given a query trajectory Tq = {g1, g2, ..., gc} from starting time t = 1 to current
time t = c, our goal is to accurately predict the probabilities P ∈ R|C| of
visiting destination candidates d ∈ C. The trajectories are represented in a
grid space, where an index g is assigned to each cell. The data available for
solving this problem are only training data D consisting of historical trajectories
T = {g1, g2, ..., geT } from starting time t = 1 to arrival time t = eT , which are
obtained from either unknown or specific individuals.

Note that our focus is to predict not a single destination but the visiting prob-
abilities of multiple destinations. This is because the probabilities are useful in
diverse applications. For example, location-based services can deliver multiple
advertisements to users according to probability values. Additionally, car navi-
gation systems allow users to efficiently select their destinations from candidates.

The procedure of our method is split into two phases: learning and predic-
tion. In the learning phase, it uses historical trajectories to generate destination
candidates d ∈ C and estimates the model parameter θ of an RNN for the des-
tination prediction. In the prediction phase, our method computes the visiting
probabilities P from a query trajectory Tq by using the learned RNN model with
θ. Section 3.1 describes our RNN model, and Section 3.2 describes our prediction
algorithm based on the learned model.

3.1 Model

Architecture Figure 2 illustrates our RNN architecture. The RNN takes as
input a vector gt, which is a one-hot representation computed from a location
index gt at timestep t. The one-hot vector gt is then embedded into a relatively
low-dimensional space to obtain semantic representations of a location. Next,
the embedded features are fed to the hidden layers consisting of long short-
term memory (LSTM) units [5, 3], which can memorize long-term sequences
with variable sequence lengths. The LSTM units also take two previous state

Title Suppressed Due to Excessive Length 5

vectors, hidden state ht−1 and cell state ct−1. Finally, the soft-max layer outputs
a transition probability pt+1 = P (gt+1|gt, gt−1, ..., g1) for each grid cell while the
LSTM units compute the next two state vectors ht and ct. Although there is
an alternative way that directly uses as input and output the sequences of two
scalar values of raw spatial coordinates (longitude and latitude), it is difficult to
train such a simple model in the RNN architecture because any prior information
on the distribution of the data is not taken into account [1].

Learning We first generate destination candidates C. Given historical trajec-
tories T ∈ D, we consider the last location point of each trajectory T as a past
destination (e.g., taxi drop-off locations and stay points). The algorithm extracts
the index d on the basis of the past destination for each trajectory and uses the
set of the indices as the destination candidates C.

Next, we learn the model parameters of the RNN by maximizing the condi-
tional likelihood over the set of all historical trajectories as:

θ̂ = argmax
θ

∑
T∈D

eT−1∏
t=1

P (gt+1|gt, gt−1, ..., g1; θ). (1)

This is equivalent to minimizing the cross-entropy loss between the output prob-
ability distributions pt and the one-hot representations gt at t = 2, 3, ..., teT . To
optimize θ based on Equation (1), we use truncated back propagation through
time (BPTT) [20] based on mini-batch AdaDelta [15], which is more efficient
than vanilla stochastic gradient decent (SGD) or full-batch optimization. In our
experiments, we set the length of truncated BPTT and size of a mini-batch to
20 and 100, respectively. We also clip the norm of the gradients (normalized by
mini-batch size) at 5 to deal with exploding gradients [11].

3.2 Destination Prediction

Using the RNN model with θ, our method predicts visiting probabilities P for
C from an input query trajectory Tq. Specifically, we exploit the RNN encoder-
decoder framework. First, we compute hidden states hc and cc at the current
timestep t = c by using the RNN encoder with the LSTM units, which takes
as input the sequence of one-hot representations g1,..., gc of Tq and recurrently
updates the state vectors. The visiting probabilities P are then computed from
the current hidden states hc by using the RNN decoder with the soft-max layer.
However, the soft-max layer only estimates transition probabilities P (gc+1|Tq)
on the next timestep because the RNN decoder is based on sequence-to-sequence
modeling. In most cases, more than one timestep is taken to get to destinations
from current locations, and thus we need additional operations to obtain P.

A näıve solution is to directly calculate transition probabilities for all transi-
tion patterns and integrate them. Given the maximum step size M for detours,
which is computed from training data, the visiting probability for a destination

6 Lecture Notes in Computer Science: Authors’ Instructions

: Destination candidate

: Current position

: Input query trajectory

(…,)

Sampling

(Decoding)

. . .

Up to times sampling

tim
es sim

u
latio

n

.

.

.

Encoding

Vote

destinations

.

.

.

. . .

Fig. 3. Sampling simulation for destination prediction using the RNN encoder-decoder.

d of P is obtained as P (gc+1=d|Tq) + P (gc+2 = d|Tq) + ... + P (gc+M = d|Tq),
where P (gc+m|Tq) for variable m and any d is defined as:

∑
∀gc+m−1

...
∑
∀gc+1

c+m−1∏
t=c

P (gt+1|gt, gt−1, ..., gc+1, Tq; θ). (2)

Compared with low-order Markov processes, the RNN decoder takes a large
amount of time to compute P (gc+m|Tq) because RNN depends on longer se-
quences. For example, to compute P (gc+M |Tq) as exact as possible, we need

to iterate RNN decoding |G|M−1
times; this is impossible because |G| and M

are usually a few thousand and a few dozen, respectively. If we assume that
users move to adjacent cells in a single transition, the computational complexity
reduces to O(8M−1), but the prediction still takes a long time.

Instead, analogous to what is done in Monte Carlo methods and word se-
quence generation [4], our algorithm efficiently estimates the visiting probabili-
ties for each destination candidate. As shown in Figure 3, the algorithm simu-
lates the movement of objects by stochastically sampling a position at the next
timestep according to the transition probabilities obtained by the RNN decoder.
Specifically, the algorithm first samples a position according to P (gc+1|Tq) and
then samples a position according to P (gc+2|gc+1, Tq). This process is repeated
up to M times or until the sampling reaches one of the destination candidates.
If one of the destination candidates is reached, a vote is cast on the element of
P corresponding to the destination. After P is initialized to a zero vector, this
sampling simulation is iterated N times. Finally, by normalizing P, we can es-
timate the visiting probability distribution for each destination candidate. This
procedure can be easily parallelized for each simulation step.

Considering spatial proximity In our sampling simulation, there is no con-
straint on the distance of a single transition in a discretized grid space. This
results in the algorithm predicting wrong destinations far away from a true des-
tination because a simulation sample may suddenly jump to a distant cell. To

Title Suppressed Due to Excessive Length 7

Fig. 4. Virtual goal grid cells to distinguish arrival states from goal states. If indices
of destination candidates are defined on the common grid space, the sample stops at
a false destination candidate on the routes to a true destination (a). If indices of goal
grid cells are defined, the sample does not stop at the false destination candidates and
jumps to the goal grid cell of a true destination from a nearby cell (b).

consider distance information, we control the transition probabilities on the ba-
sis of the spatial proximity of the cells. In practice, we update the transition
probabilities pt estimated using the RNN decoder and obtain new transition
probabilities p′

t so that a sample does not easily jump to a distant cell:

p′
t =

pt ◦ sgt−1

|pt ◦ sgt−1
|
, (3)

sg = [exp(−Dist(g, 1)

σ2
), ..., exp(−Dist(g, |G|)

σ2
)], (4)

where ◦, Dist(·, ·), and |G| denote element-wise multiplication, distance (in me-
ters) between two cells, and the number of all grid cells, respectively. σ2 denotes
the variance of the distribution. The smaller σ2 is, the harder it is for the sam-
pling to jump to a distant cell. We set σ2 to 200m based on the size of a cell
(i.e., 150m×150m as explained in the Section 4.1). σ2 can also be automatically
determined from historical trajectories.

Distinguishing arrival states from moving states If indices of destination
candidates are defined on the common grid space, the sampling procedure stops
when a sample reaches any of the other false destinations on the route to the
true destination (Figure 4(a)). This fact may prevent the sample from getting to
a true destination far away from its current place. As shown in Figure 4(b), we
solve this problem by assigning destination candidates with indices of virtual goal
grid cells to distinguish arrival states from moving states. The goal grid cells are
connected with other common grid cells and indicate whether the sample arrives
at a destination or moves through it.

4 Experiments

To validate the effectiveness of our method, we compared our method with the
SubSyn algorithm [14], which is a state-of-the-art parameter-free algorithm that
uses low-order Markov process modeling, and the MLP-based algorithm [1].

8 Lecture Notes in Computer Science: Authors’ Instructions

Table 1. Geographical ranges and statistics of the datasets.

Dataset TST GL

Latitude [41.131571, 41.162477] [39.68, 40.19]
Longitude [-8.613876, -8.565437] [116.05, 116.72]
of trajectories 154,616 8,390 (in 46 users)
Avg. distance (m) 2127.4 ± 1130.0 5258.1 ± 8172.7
Avg. cell length 14.8 ± 7.0 13.3 ± 13.8

4.1 Datasets

We used a taxi service trajectory (TST) dataset [10], which contains trajectories
for hundreds of taxis. Each trajectory includes sequences of latitude and lon-
gitude from a boarding location to a drop-off location. Additionally, we used a
GeoLife dataset [18, 16, 17], which is publicly available dataset of personal tra-
jectories in Beijing. We assumed that a change point of a transportation mode
was a stay point and considered a segment with the same transportation mode
as a single trajectory from an origin to a destination. We omitted users that
had less than ten trajectories from the dataset. For our method and the SubSyn
algorithm, cell size and a grid space need to be defined. We used 150m× 150m
cells and a grid space consisting of a part of the full dataset to reduce the high
computational costs of conducting various experimental conditions. Table 1 sum-
marizes statistics of these datasets.

4.2 Experimental settings

Evaluation measures. We used Accuracy@k and Distance@k as the evalua-
tion measures. Accuracy@k indicates the ratio of destinations that are accurately
predicted in a cell to all query trajectories Tq. On the other hand, Distance@k
indicates the average distance error between the true destinations and the pre-
dicted destinations for all query trajectories Tq. We computed these measures
for the top k destinations based on destination visiting probabilities P and used
the best values in top k.
Evaluation methods. We sorted the trajectories in each dataset in ascending
order of time and used the first 70% for training and the remaining 30% for test.
For the TST dataset, we generated a single model for all of the trajectories to
evaluate our method for unknown individuals. Meanwhile, for the GL dataset,
we generated multiple models for multiple users to evaluate our method for
specific individuals. In this case, we computed Accuracy@k and Distance@k for
each user and averaged them. As a query trajectory Tq, we used the older α%
location points in each test trajectory and took the last location point to be the
ground-truth destination.

4.3 Results and analysis

In this section, we answer the research questions that correspond to the two
challenges, explained in Section 1, by analyzing our experimental results.

Title Suppressed Due to Excessive Length 9

RQ1 Can the proposed method make improvements to the destination prediction
by learning long-term dependencies?

Figure 5 shows Accuracy@k and Distance@k for each dataset. As can be seen
in the results for the TST dataset, our method outperformed SubSyn in terms of
both Accuracy and Distance when using the same input length α. In particular,
the degree of Accuracy improvement was remarkable when larger values of α
were used (i.e., query trajectories have longer sequences). Moreover, Ours50%
outperformed SubSyn70% that used a longer input. MLP, which formulates the
destination prediction as a regression problem, minimizes the overallDistance in
the training dataset; on the other hand, our method optimizes the probabilities
of visiting destination cells, i.e., the Accuracy measure. Therefore, our method
performed significantly better than MLP in terms of Accuracy@1. In contrast,
MLP significantly outperformed our method in Distance@1 when α = 30%, but
ours yielded comparable or slightly poor results to MLP when α = 50% and
performed slightly better than MLP when α = 70%. These results indicate the
capability of our method for handling long-term dependencies.

(a) Accuracy@k on TST (b) Distance@k on TST

(c) Accuracy@k on GL (d) Distance@k on GL

Fig. 5. Overall performance of destination prediction.

Our method worked much
better than the other meth-
ods on the GL dataset,
especially for larger val-
ues of α. One reason for
the improvements is that
our method can capture
personal routines based on
long sequences of trajecto-
ries. Meanwhile, larger val-
ues of α worsened the predic-
tive accuracy and distance
error of SubSyn in contrast
to the results of Ours and
MLP. In the GL dataset,
there are several frequent
origins (e.g., home), and the
current location of a query trajectory will be distant (near) from such origins
when α is large (small). That is, larger values of α seemed to decrease the number
of training transitions between the current and destination locations although
SubSyn needs the transition probabilities between current and destination loca-
tions.

RQ2 Can the proposed method alleviate the data sparsity problem?

Figure 6 shows performance for each method with different training data
sizes on the TST dataset. Despite modeling longer sequences, our method often
worked well even when the number of historical trajectories for learning was
small. This is because our RNN stored the statistical weights of variable-length
trajectories instead of counting fixed-length transitions.

10 Lecture Notes in Computer Science: Authors’ Instructions

Training data size Training data size

Fig. 6. Accuracy@1 (left) and Distance@1 (right)
with different training data size in the TST dataset.

Additionally, as shown in
Table 1 and Figure 5, al-
though the GL dataset had
a smaller number of trajec-
tories than the TST dataset,
the improvements of our
method over the other meth-
ods on it were larger than
on the TST dataset. In this
case, MLP performed worst
because it faced the data sparsity problem when determining the density-based
destination clusters and when learning the sequence-to-point relation. Although
SubSyn performed slightly better than MLP thanks to their sub-trajectory ap-
proach, Ours performed best because our sequence-to-sequence RNN model can
cope with a small dataset more effectively.

(a) (b)

Fig. 7. (a) Prediction time and (b) Accuracy@1 de-
pending on the number of simulation N .

Computational time Fig-
ure 7(a) shows the time
needed to make a predic-
tion for a query trajectory.
We parallelized the sampling
simulation using 10 pro-
cesses on the CPU. In this
figure, computational times
linearly increase depending
on the number of sampling
simulations N , except when
N = 10 because most time was taken for overhead costs of the parallelization.
In particular, the prediction takes only a few seconds when N is a few hun-
dred. Figure 7(b) shows Accuracy depending on N in 2,500 trajectories sampled
from the TST dataset. As can be seen, while a large N tends to give better
performance, the gain in accuracy begins to level off after N = 100. As for the
learning time, we took a few days worth of data from the TST dataset, and took
about a half hours worth for one user of the GL dataset. Although the learning
time exceeded the prediction time, this does not matter much in real application
services because the model can be learned in advance.

Parameter sensitivity We evaluated the sensitivity of our method to varia-
tions of the cell size using the GL dataset as shown in Tables 2. For the grid-
based methods (Ours and SubSyn), the cell size is important to determine the
granularity of predicted destinations. The larger cell, the more difficult it is to
identify the true location of a destination in a cell. That is, the large cell increases
Accuracy while it decreases the resolution of predicted locations, which affects
Distance. Nevertheless, ours outperformed the existing methods for every cell
size in terms of both metrics. For MLP, Distance did not depend on the cell
size because it directly predicts a location of a specific destination. When the
cell size was small (the number of cells was large), SubSyn could not predict

Title Suppressed Due to Excessive Length 11

Table 2. Performance of each method with different cell sizes when α = 50%.
Cell width 5000m 1200m 150m 40m

MLP (Accuracy@1) 0.466 0.268 0.101 0.012
SubSyn (Accuracy@1) 0.506 0.310 0.103 N/A
Ours (Accuracy@1) 0.618 0.408 0.147 0.029

MLP (Distance@1) 4448 4448 4448 4448
SubSyn (Distance@1) 4376 4247 4346 N/A
Ours (Distance@1) 3427 2401 2380 2647

destinations because its orders of computational complexity and memory space
were O(|G|3.5) and O(|G|2.5), where |G| is the number of cells.

For the network structure, we evaluated our method with other parameters
(128-1024 LSTM units and 1-3 RNN layers). In the results, there were no sig-
nificant differences in performance between them.

Comparison with other possible approaches We also validated our indi-
vidual approaches (i.e., sampling simulations (SS), spatial proximity (SP), and
goal cells (GC) described in Section 3.2). Table 3 compares the performance of
the methods with and without these approaches using 2,500 trajectories sampled
from the TST dataset. The results demonstrated that each of these approaches
improved the accuracy and distance metrics.

Table 3. Performance of Ours and other possible approaches when α = 50%.

Method Ours Ours w/o SS Ours w/o SP Ours w/o GC

Accuracy@1 0.141 0.051 0.115 0.050

Distance@1 701 1200 939 770

5 Conclusion

We proposed a method of predicting destinations from partial trajectories. Our
method represents trajectories as sequences of one-hot representations on a grid
space and explicitly learns transitions of objects by using an RNN model that
stores statistical weights of sequential information in its hidden layers. This en-
ables us (i) to model long-term dependencies while (ii) avoiding the data spar-
sity problem. Additionally, our method efficiently predicts destinations using a
stochastically sampling simulation based on the RNN encoder-decoder frame-
work. We conducted evaluation experiments using two different datasets and
demonstrated that our method was effective for both unknown individuals and
specific individuals.
Limitations and future work. The computational time for learning the RNN
model linearly increases with the number of grid cells |G|, and thus it seems to
be difficult to target a huge area with fine grids. Although we did not use finer
grids with 150m×150m cells in our experiments, our method performed in large
areas such as downtown in Beijing. A simple solution to expand a target area
would be to divide a single RNN model that covers a huge area into multiple
RNN models that cover a small area.

Another challenge is to incorporate time information into our method. Time
information is helpful for predicting user activities; e.g., a user goes to an office

12 Lecture Notes in Computer Science: Authors’ Instructions

in the morning and a bar in the evening. Multi-view models [2] for handling such
information in trajectories would thus be an interesting topic of future work.

References

1. A. de Brébisson, É. Simon, A. Auvolat, P. Vincent, and Y. Bengio. Artificial neural
networks applied to taxi destination prediction. CoRR, abs/1508.00021, 2015.

2. A. M. Elkahky, Y. Song, and X. He. A multi-view deep learning approach for cross
domain user modeling in recommendation systems. In WWW, 278–288, 2015.

3. F. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: continual prediction
with lstm. In ICANN(2), 850–855, 1999.

4. A. Graves. Generating sequences with recurrent neural networks. CoRR,
abs/1308.0850, 2013.

5. S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, Nov. 1997.

6. E. Horvitz and J. Krumm. Some help on the way: Opportunistic routing under
uncertainty. In UbiComp, 371–380, 2012.

7. J. Krumm and E. Horvitz. Predestination: Inferring destinations from partial
trajectories. In UbiComp, 243–260, 2006.

8. J. Krumm and E. Horvitz. Predestination: Where do you want to go today?
Computer, 40(4):105–107, April 2007.

9. Q. Liu, S. Wu, L. Wang, and T. Tan. Predicting the Next Location: A Recurrent
Model with Spatial and Temporal Contexts AAAI, 194–200, 2016.

10. L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and L. Damas. Pre-
dicting taxi-passenger demand using streaming data. Intelligent Transportation
Systems, IEEE Transactions on, 14(3):1393–1402, Sept 2013.

11. R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent
neural networks. In ICML, 1310–1318, 2013.

12. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Neurocomputing: Foundations
of research. chapter Learning Representations by Back-propagating Errors, 696–
699. 1988.

13. A. Y. Xue, J. Qi, X. Xie, R. Zhang, J. Huang, and Y. Li. Solving the data sparsity
problem in destination prediction. The VLDB Journal, 24(2):219–243, Apr. 2015.

14. A. Y. Xue, R. Zhang, Y. Zheng, X. Xie, J. Huang, and Z. Xu. Destination prediction
by sub-trajectory synthesis and privacy protection against such prediction. In
ICDE, 254–265, 2013.

15. M. D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR,
abs/1212.5701, 2012.

16. Y. Zheng, Q. Li, Y. Chen, X. Xie, and W. Ma. Understanding mobility based on
GPS data. In UbiComp 2008, 312–321, 2008.

17. Y. Zheng, X. Xie, and W. Ma. Geolife: A collaborative social networking service
among user, location and trajectory. IEEE Data Eng. Bull., 33(2):32–39, 2010.

18. Y. Zheng, L. Zhang, X. Xie, and W. Ma. Mining interesting locations and travel
sequences from GPS trajectories. In WWW, 791–800, 2009.

19. B. D. Ziebart, A. L. Maas, A. K. Dey, and J. A. Bagnell. Navigate like a cabbie:
Probabilistic reasoning from observed context-aware behavior. In UbiComp, 322–
331, 2008.

20. D. Zipser. Advances in neural information processing systems 2. chapter Sub-
grouping Reduces Complexity and Speeds Up Learning in Recurrent Networks,
638–641. Morgan Kaufmann Publishers Inc., 1990.

