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Abstract. This paper addresses the problem of feature extraction for
estimating users’ transportation modes from their movement trajecto-
ries. Previous studies have adopted supervised learning approaches and
used engineers’ skills to find effective features for accurate estimation.
However, such hand-crafted features cannot always work well because
human behaviors are diverse and trajectories include noise due to mea-
surement error. To compensate for the shortcomings of hand-crafted fea-
tures, we propose a method that automatically extracts additional fea-
tures using a deep neural network (DNN). In order that a DNN can
easily handle input trajectories, our method converts a raw trajectory
data structure into an image data structure while maintaining effective
spatio-temporal information. A classification model is constructed in a
supervised manner using both of the deep features and hand-crafted fea-
tures. We demonstrate the effectiveness of the proposed method through
several experiments using two real datasets, such as accuracy compar-
isons with previous methods and feature visualization.
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1 Introduction

Estimating users’ contexts from their movement trajectories obtained from de-
vices such as mobile phones with GPS is crucial for location-based services (e.g.,
Google Now! and Moves?). This paper focuses on a specific aspect of human
movement, the transportation mode of individual users when they move. The
ability to accurately determine the transportation mode on mobile devices will
have a positive impact on many research and industrial fields, such as person-
alized navigation routing services [7] and geographic information retrieval [17].
According to previous studies [21-23], transportation mode estimation involves
two steps: extraction of segments of the same transportation modes and estima-
tion of transportation modes on each segment (see also Figure 1 (a)).

In estimating transportation modes, researchers have manually discovered
effective features for supervised classification (e.g., movement distance, veloc-
ities, acceleration, and heading change rate [21-23]) using their skills. While

! http://www.google.com/landing/now/
% https://play.google.com/store/apps/details?id=com.protogeo.moves
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Fig. 1. Transportation mode estimation and our contributions.
this heuristic approach is basically important for discriminating between trans-
portation modes, hand-crafted features do not always work well because human
behaviors are diverse, and movement trajectories also include various aspects.
For example, movement distance and velocity, which are especially fundamental
and effective features, depend on users’ contexts even when they are using the
same transportation mode. Such features are also susceptible to GPS measure-
ment error, which becomes larger especially in urban environments.

To compensate for the above shortcomings, we utilize additional features
automatically extracted by representation learning. Deep learning [2, 6] is a well-
known example of this, which learns a deep neural network (DNN) model with
multiple intermediate layers and can automatically extracts effective higher-level
features for tasks from lower-level features of input data. Recently, this technique
fundamentally improved performance in some fields including image recogni-
tion [8] and speech recognition [4].

The effectiveness of deep features for a task depends on an input data struc-
ture. For example, while raw pixel values are often used as input of a DNN for
image data [6, 8], spectrograms are calculated from raw signals for audio data
so that a DNN can easily handle them [4]. These approaches cannot be directly
adapted to the locational information because which has a different data struc-
ture (a series of latitude, longitude, and timestamp) from image and audio data.
Consequently, how to apply deep learning to locational information has not been
properly studied.

We propose a method that extracts features from raw GPS trajectories using
deep learning. Our key idea is to represent GPS trajectories as 2D image data
structures (called trajectory images) and use these trajectory images as input of
deep learning. This is based on the knowledge that deep learning works well in
the field of image recognition. For example, a DNN can detect local semantic
attributes of images, such as skin patterns and tail shapes of animals, as human
can understand by looking them. This is because a DNN has a structure that ap-
proximates the operation of the neocortex of a human brain, which is associated
with many cognitive abilities [1]. Our assumption is that a DNN can suitably
detect particular attributes from the trajectory images: movement trajectories
inherently contain 2D spatial information that is more naturally perceivable for a
human brain (i.e., a DNN) rather than simple latitude, longitude, and timestamp
values.
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We also propose a supervised framework for transportation mode estima-
tion, which includes our feature extraction method from trajectory images. As
illustrated in Figure 1 (b), the framework first generates trajectory images from
given GPS trajectory segments. After trajectory images are generated, higher-
level features are extracted using a fully-connected DNN with stacked denoising
autoencoder (SDA) [19], which is a representative method of deep learning. In-
tuitively, higher-level features are obtained by appropriately filtering trajectory
images for picking up discriminative parts of the images. Finally, transporta-
tion modes are estimated using a classifier that is learned from the higher-level
features and transportation mode annotations.

Our main contributions are summarized as follows:

— We propose a method for generating informative trajectory images for deep
learning from raw GPS trajectories (Section 3).

— We propose a supervised framework for trajectory classification including
feature extraction from trajectory images using deep learning (Section 4).

— Extensive evaluations are provided to confirm the effectiveness of our method
using two real datasets (Section 5).

2 Related Work

GPS trajectory mining. An overview of trajectory data mining is outlined in
a survey [20]. In particular, there have been many studies on trajectory mining
tasks such as user activity estimation [5, 12], transportation mode estimation [10,
13,14, 21-23], and movement destination estimation [16]. Several methods [5, 12]
use not only GPS trajectories as features but also body temperature, heart rate,
humidity, and light intensity obtained from other sensors, and construct a model
for predicting user activities such as walking, running, cycling, and rowing. While
these methods can estimate various user activities, users need to carry many
devices. Estimating a user’s context with few sensors is ideal to lighten his/her
burden. Therefore, using sensor information other than GPS trajectories is out
of the scope in this paper.

Liao et al. [10], Patterson et al. [13], and Shah et al. [14] reported on methods
for estimating transportation modes, such as walking, bus, and car, using only
GPS trajectories as sensor data. However, their methods require external infor-
mation including a street map. Static information, such as a street map, might
not be applied to the task because structures of cities dynamically change over
time. We therefore do not target methods that require external information.

For an approach that does not use external information, Zheng et al. [23]
proposed a method that can estimate transportation modes using only GPS tra-
jectories. They describe a method for segmenting GPS trajectories by detecting
change points of transportation modes on the basis of velocity and acceleration.
Transportation modes are then estimated from features of segments using a clas-
sifier. Zheng et al. first presented basic features such as moving distance, velocity,
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and acceleration [21]. They also introduced advanced features including veloc-
ity change rate (VCR), stop rate (SR), and heading change rate (HCR), which
achieved more accurate estimation [22]. While their method uses hand-crafted
features, our method tackles the problem of automatically extracting effective
features from trajectory images.

Deep Learning. One of the major goals of deep learning is to obtain effective
higher-level features from signal-level input using a DNN. For example, while
traditional approaches for image recognition use hand-crafted features such as
scale-invariant feature transform (SIFT) [18], a DNN can automatically extract
effective features from raw image pixels. In fact, it has been reported supervised
learning with deep features can achieve high recognition accuracy [6].

Although a DNN has high expressiveness, learning a DNN model efficiently
using conventional approaches is difficult due to a vanishing gradient problem.
Specifically, back-propagation used to optimize a DNN does not sufficiently
propagate a reconstruction error to deep layers, and the error vanishes midway
through an intermediate layer. To solve this problem, greedy layer-wise training
was proposed [2,6], and it has allowed the topic of deep learning to gain sig-
nificant attention. This technique pre-trains parameters of intermediate layers
layer-by-layer in an unsupervised manner before fine-tuning for the entire net-
work. This enables error information to be efficiently propagated to deep layers
and consequently improved performance in many tasks.

There are several techniques for deep learning such as deep belief nets (DBN) [6],
deep Boltzmann machine (DBM) [3], and SDA [19] for pre-training. These and
other techniques are outlined in a survey [3] that can be referred to for more
information. In this paper, we adopt fully-connected DNN with SDA for trans-
portation mode estimation for the first time and demonstrate its effectiveness.

3 Trajectory Image Generation

There are several difficulties for generating informative trajectory images so that
DNNSs can discriminate between transportation modes. First, most of the DNNs
must fix the dimensions of input vectors. That is, input images must be the
same size when the pixel values are directly used as the input vectors. How-
ever, different-sized images are obtained by simply clipping an entire GPS seg-
ment when a spatial length of one pixel is fixed. The reason is that topographic
ranges of the GPS segments differ especially depending on transportation modes
(walking is often narrow while a train is broad). Although one straightforward
approach to solving this problem is to resize different-sized images to the same
size, distance information in a trajectory is lost since each scale differs. Sec-
ond, DNNs require sufficient as well as informative training data to improve its
performance. If images are high resolution (number of pixels is large), detailed
movement can be obtained; however, the trajectory pixels (non-zero pixels) in
the images become sparse, and such sparse images degrade the generalization
capability of a DNN. As a result, many trajectory images are required in order
to overcome this sparsity problem. If images are low resolution (number of pixels
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Fig. 2. Overview of trajectory image generation.

is small), the sparsity problem is alleviated, but much information of GPS points
corresponding to the same pixel is lost.

Based on the above, our trajectory image generation method consists of two
steps: (1) determining the target range of a segment that is converted into a
fixed size image and (2) determining the number and value of pizels of the im-
age. For the first step, we simply clip a certain area from each segment. To do
this, we define a rectangle region for clipping by ranges of latitude and longi-
tude. Although information outside the defined region is lost, we verified that
this method outperforms the resizing method through our experiments because
distance information in a trajectory is preserved. For the second step, we use
stay time to determine pixel values; i.e., the longer a user stays in the same pixel
(a rectangular region), the higher the pixel value becomes. This manner can
maintain temporal information of a segment with a small number of pixels, and
thus can alleviate the sparsity problem rather than using large binary images
that maintain the details of movements.

An overview of trajectory image generation is shown in Figure 2. We first
define some terms used in our method. We refer to each data point given a
positioning system as a GPS point. Given segment s as input, let Ps = (p(i))g\];1
be a sequence of continuous GPS points, where Ny denotes the number of GPS
points in the segment. Let p(® represent the i-th GPS point and each GPS
point be represented as a three-tuple p(9) = (lat,lng,t); latitude lat, longitude
Ing, and timestamp t. Let W, and H, denote ranges of longitude and latitude
for pixelizing trajectories, respectively, whereas W,, and H,, denote width and
height of images, respectively. Let T is a time interval for sampling GPS points
from input GPS trajectories of P,. I, € RWm*Hm denotes a generated trajectory
image that has one-channel value (intensity) per pixel like a grayscale image.

To extract a trajectory image from a GPS trajectory in a segment, we first
evenly sample GPS points from P;. The GPS points in each segment are not
always positioned at a fixed time interval due to differences in GPS sensors and
signal quality. If sequential GPS points positioned at different time intervals are
converted into trajectory images, short time intervals result in a long stay in one
pixel even if a user stays in the pixel for a short time. We therefore sample GPS
points from P, at T intervals on the basis of timestamps p(¥).t. If the next GPS
point is not obtained after just T, we sample the nearest time GPS point. As a
result, we obtain a sequence of the sampled GPS points and denote it as P..

In the next step, the target range of a GPS trajectory in a segment is deter-
mined. For all segments, we compute the centroid of the sampled GPS points
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Walking Bike Subway Taxi Train
Fig. 3. Examples of trajectory images extracted from real GPS trajectories. Brighter
color means longer stay time.

of P! using pD.lat and p(?.Ing and then align the centroid with the center
of a trajectory image to unify the basic geographical coordinates. We define a
clipped region as a rectangular area measuring W, and H,. The rectangular
area is divided into W,,, x H,, grids and each grid corresponds to each pixel of
the trajectory image. The number of pixels W, x H,, is searched for using grid
search, and the range of grid search is empirically determined as explained in
the evaluation section.

Finally, GPS points of P, are then plotted when the GPS points exist in
a defined grid. When plotting GPS points, we add a constant ¢ = 1 to the
corresponding pixel to express the stay time in the pixel. After plotting all GPS
points of P! on the segment s, trajectory image I, is obtained.

Figure 3 shows several examples of trajectory images extracted from real GPS
trajectories. The intensity of pixels indicates a user’s stay time: the brighter the
color, the longer the stay time. These trajectory images show that the images
store distance information by clipping in the same range and represent time
information through the pixel values. For instance, pixels near the center of the
walking images become bright since the moving distance of walking is relatively
short and the user stays in the same pixels for a long time. On the other hand,
the images of bus and subway include rectilinear lines that are geographically
widespread. There are such easy-to-understand features in the images, whereas
it is time-consuming and difficult to discover all features and quantify them. We
therefore extract effective features from trajectory images using deep learning in
the next section.

4 Deep Feature Extraction and Classification

To use trajectory images as input of a fully-connected DNN, we convert trajec-
tory image matrices I, into W,,, x H,, dimensional vectors x; by simply aligning
each pixel value. The number of intermediate layers L of the DNN is determined
by grid search as explained in the evaluation section. We use a sigmoid function
s(+) as an activation function of each layer. To pre-train parameters (weighting
matrices W ;) and bias terms b(;) at each intermediate layer I ) of DNN using
SDA [19], we use a minibatch L-BFGS method because of its effectiveness for
classification problems [9]. After pre-training with SDA, supervised fine-tuning
adjusts parameters of the entire DNN using annotated labels. For fine-tuning,
an output sigmoid layer is added to the DNN, and parameters are updated using
a stochastic gradient descent (SGD) method on the basis of the squared error
between vectors on the output layer and binary vectors obtained from annota-
tions. By using the learned DNN, higher-level features x(41) are extracted from
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the deepest L intermediate layer of the DNN:
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These image-based higher-level features are concatenated with the hand-crafted
features x. (movement distance, mean velocity, etc.). We construct a classifier,
such as logistic regression and support vector machine, using the concatenated
features [X{L +1),XZ]T and annotated transportation mode labels.

5 Evaluation

5.1 Dataset

GeoLife (GL). We used a GeoLife dataset [21-23] published by Microsoft
Research. The GPS trajectories in the dataset were basically positioned every
1-3 seconds and 69 users annotated labels of transportation modes. We removed
the data of users who have only 10 annotations or fewer and used the data of 54
users for our experiments. Each annotation contains a transportation mode and
beginning and end times of the transportation. In the experiments, we labeled
each section of GPS trajectories between the beginning and end times with an
annotation, and used these sections as a segment of the same transportation
mode. Although there are 11 types of annotations, we used only 7 (walking, bus,
car, bike, taxi, subway, and train) because the other 4 are in too few trajectories,
and 9,043 segments were obtained.

Kanto trajectories (KT). To verify that our method works in other regions,
we used other trajectory data collected in the Kanto area of Japan. The data
contains 30 users’ trajectories for 20 days obtained from a Nexus7 2012 with
a GPS sensor. The trajectories were basically positioned every 3 seconds. Each
trajectories were annotated with a label of the seven transportation modes (walk-
ing, bike, car, bus, taxi, motorcycle and train). In this dataset, we additionally
segmented each labeled segment at three-minute intervals, and 14,019 segments
were obtained. This is because we assume the use of our method for a real-time
application, which estimates transportation modes from sequential segments for
a relatively-short time window.

5.2 Compared methods

Feature extraction methods. To evaluate our feature extraction method, we
prepared the following baseline features and our features:

— Basic Features (BF) [21]: Ten dimensional features such as velocity.
— BF+Advanced Features (AF) [22,23]: Thirteen dimensional features includ-
ing BF and advanced features (VCR, SR, HCR).

— BoVW (Bag of Visual Words): Image features extracted from trajectory
images using Dense-SIFT [18].
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— SDNN: deep features extracted using a DNN from vectors simply consisting
of a series of latitude, longitude, and movement time at each GPS point.

— IDNN: deep features extracted using a DNN from trajectory images.

— BF+AF+IDNN: Features consisting of hand-crafted ones (BF+AF) and
deep ones of trajectory images (IDNN).

For SDNN, the dimensions of input vectors are fixed to be the same number as
those of the trajectory images of IDNN. Since one GPS point consists of three
dimensional components (i.e., latitude, longitude, and movement time), when
three times the number of GPS points in a segment is smaller than the fixed
dimensions, the empty element of the vector is set to 0. When that value is larger
than the fixed dimensions, the newer GPS points are discarded.
Classification methods. To build a classifier for estimating transportation
modes, supervised learning is done using the extracted features and transporta-
tion mode annotations. We compared three classification methods, logistic re-
gression (LR), support vector machine (SVM), and decision tree (DT). The
experiment showed that the effectiveness of the classification method differs
according to the features. For BF and BF+AF, we used DT in the following
experiments since DT obtains the highest accuracy [21-23]. For BoVW, we used
SVM. For SDNN, IDNN and BF+AF+IDNN, we used LR.

5.3 Evaluation method

As an evaluation metric, we use accuracy that is the ratio of segments of cor-
rectly estimated labels out of all segments. We used 5-fold cross validation (CV)
over users, that is, each dataset was divided into training segments of 80% users
and test segments of 20% users, while previous studies [21-23] mentioned noth-
ing about discriminating users. This is because the training data of the test
users are not often obtained in a realistic scenario. The problem setting in our
study is more difficult than the previous studies. This is because movement fea-
tures depend on users due to their habits or environments but their data cannot
be trained, and we also handle more transportation modes than the previous
studies.

For the GL dataset, we search for model parameters using grid search based
on 5-fold-CV with training data (i.e., nested CV):

— For DT, the splitting criterion is selected from the Gini coefficient or entropy,
and the maximum ratio of features used for classification is searched for from
{0.1,0.2,...,1.0}.

— For SVM, the rbf kernel is used, the trade-off parameter is searched for from
{0.01,0.1,1,10,100}, and the kernel coefficient is searched for from {0.001,
0.01, 0.1,1, 10}.

— For trajectory image generation, the interval of sampling GPS points T
is searched for from {10,30, 60,120} seconds, ranges of longitude W, and
latitude H, from {0.01,0.05, 0.1,0.2}, and the image size W, x H,, from
{20 x 20,25 x 25,30 x 30,35 x 35,40 x 40,50 x 50}.
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— For the DNN, the number of intermediate layers L is searched for from
{1,2,...,5} (often 3 performed best), the number of each layer’s neurons from
{10, 50,100,200} (often 100 performed best). For fine-tuning, the learning
rate is set to 0.1 and the number of epochs is searched for from {1, 2, ...,15}.

For the KT dataset, we empirically set the parameters by referring to the
parameters automatically determined for the GL dataset.

5.4 Performance of feature extraction

Overall performance. Table 1 compares the accuracies of transportation
mode estimation with our features and the other features. The bold font denotes
the condition that yielded the highest accuracy. In the results for both datasets,
the accuracy of IDNN is modestly higher than those of BF and BF+AF. This
indicates that the features extracted from trajectory images using deep learn-
ing work at least similarly to the hand-crafted features, without complicated
features designing. IDNN also significantly outperformed BoVW, that is, deep
learning is more effective than the common image feature extraction approach.
In contrast, SDNN does not work well despite using deep learning. It implies
that simply applying deep learning to almost raw trajectory data cannot extract
effective features for this task. Finally, it can be seen that the proposed method
with the hand-crafted and deep features (i.e., BE+AF+IDNN) achieves the best
performance among all the methods. In other word, our deep features make up
for the deficiencies of the existing features.

Noise robustness. We also evaluated our method’s robustness against noise.
For this purpose, we generated noisy trajectory data from the KT dataset. While
the original dataset already contains some noise due to measurement error, the
measurement can degenerate even more depending on the performance of a GPS
sensor equipped in a mobile device and urban environments. For example, the
KT dataset has about a 10-meter error on average according to the measurement
accuracy reported from a function of Android OS. This value seems to be rela-
tively low because we use devices with a relatively accurate GPS sensor (Nexus
7 2012), but all people do not have high-performance devices and some people
may also move in noisier environments. In fact, measurement accuracy may be
worse than 100 meters in actual situations while current positioning systems
in smartphones are accurate to within 10 meters under ideal conditions [15].
We therefore evaluated noise robustness by adding some noise to the relatively
clean trajectories in the KT dataset. The measurement is modeled as random

Gaussian noise with zero mean and o2 variance [24].
Table 1. Performance comparison of transportation mode estimation.

Features “ GL dataset [ KT dataset
BF 0.632 £ 0.025 0.771 4+ 0.0040
BF+AF 0.648 £ 0.025 0.780 4 0.0030
BoVW 0.602 £+ 0.044 0.760 £ 0.015
SDNN 0.386 = 0.014 0.474 £ 0.025
IDNN 0.663 £+ 0.029 0.797 4+ 0.0060
BF+AF+IDNN 0.679 £ 0.028 0.832 +0.0047
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Fig. 4. (a) Accuracy with different noisy levels in KT dataset. (b) Performance com-
parison in GL dataset with each trajectory image generation method.

Figure 4(a) shows the accuracy with different noisy levels in the KT dataset.
In this experiment, we empirically fixed the DNN parameters for simplifying
the experiment. The accuracy of BF+AF decreased with increasing noisy levels,
whereas that of IDNN was barely affected by the noise. Although the accuracy
of BF+AF+IDNN modestly decreased, it only reached that of IDNN. This is
because BF+AF does not work well when the noisy level is high, but our DNN-
based method is robust against measurement error.

There are two reasons our method is robust against measurement error. First,
noise is reduced in the process of trajectory image generation. For example,
if W, and H, are 0.01, the images are generated in the range of about 1000
square meters. When the image size W,,, x H,, is 40 x 40, one pixel represents
25 meter square. Therefore, noise of tens of meters has an insignificant effect on
trajectory image generation. Second, the DNN can automatically detect features
from trajectory images even if the data have some noise. In particular, the DNN
with SDA learns a model to be able to reconstruct de-noised data from noisy
data.

5.5 Effectiveness of image generation method

We now discuss the effectiveness of our method at generating trajectory images.
Our image generation method does not use the information of the GPS points
that are (1) outside of the defined region and (2) not sampled at T intervals,
and (3) detailed latitude and longitude values (discretization into pixels).

For the validation of the first point, as shown in Figure 4(b), we compared the
proposed method (Proposed), which maintains the scale of trajectories and also
stores the stay time in image pixels, with the following two methods. One method
(Resizing) generates different-sized trajectory images by clipping an entire region
in each segment where a spatial range of one pixel is fixed to a small constant.
It then resizes the different-sized images to the same size (i.e., W,,, x H,,) using
the nearest neighbor method [11]. The stay time information is stored in the
same way as with Proposed. The other method (No_Staytime) assigns the same
constant value to pixels in which multiple GPS points exist. The scale is main-
tained in the same way as with Proposed. Obviously, Proposed performed best
among the three methods, which suggests effectiveness of maintaining scale and
storing stay time with our method.

Second, we evaluated our method at different sampling intervals from 10 to
120 seconds. We confirmed that smaller intervals (less than 60 seconds for the GL
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dataset) worsened the accuracy via the grid search (explained in Section 5.3).
The GPS points in each segment are not always positioned at a fixed time
interval. Therefore, the sampling method, which generates GPS points at more
regular intervals, is effective for accurately maintaining the stay and velocity
information of the trajectories in images, and results in accuracy improvement.

Third, as we mentioned in Section 5.4, we confirmed the discretization into
pixels improved the robustness to spatial noises in GPS trajectories.

We concluded that our image generation method can extract important in-
formation of GPS trajectories and convert them into images effectively.

5.6 Feature visualization

We analyzed deep features by visualizing activity states of neurons on the learned
DNN. In Figure 5, the two left images show visualization results on states of acti-
vated neurons of each intermediate layer of the DNN. We can see that each layer
acts as filters for extracting characteristic parts of trajectories such as moving
range, moving interval, and distribution. The features also become more abstract
as layers become deeper. The seven right images visualize the activity states of
neurons that strongly respond to the data with the label of each transportation
mode. While it is difficult to understand all meanings of them by visualization,
we can distinguish between walking, bike, and bus on the basis of moving range.
Interestingly, we can see that the activity state of bus includes more dark re-
gions than that of car. This is seemingly because buses are driven on specific
roads unlike cars. These results verify that activated neurons differ depending on
transportation modes and that deep learning for trajectory images can extract
features that effectively distinguish between transportation modes.

6 Conclusion

We have proposed a method for extracting features from raw GPS trajectories
using deep learning. While we used a fully-connected DNN with SDA, which is
a standard method of deep learning, a convolutional neural network (CNN) is
known as a closely related approach to deep learning. Although a basic CNN
was proposed before deep learning emerged, a recent approach based on CNN
significantly improved performance of image recognition [8]. Several advanced
learning algorithms for DNNs were also proposed, such as dropout and maxout.
Nevertheless, we demonstrated that our framework for transportation mode es-
timation attained the highest overall performance and significant improvement
in noisy environment. It is hoped that our study will become a bridge between
the recently advanced approaches of deep learning and trajectory mining.



12 Yuki Endo, Hiroyuki Toda, Kyosuke Nishida, Akihisa Kawanobe
References
1. Arel, 1., Rose, D. C., Karnowski, T.P.: Deep Machine Learning - A New Frontier

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

in Artificial Intelligence Research. IEEE Comp. Int. Mag. 5(4): 13-18, 2010.

. Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H.: Greedy layer-wise train-

ing of deep networks. In NIPS: 153-160, 2006.

Bengio, Y.: Learning deep architectures for AI. FTML 2(1): 1-127, 2009.

Dahl, G. E., Yu, D., Deng, L., and Acero, A.:Context-dependent pre-trained deep
neural networks for large-vocabulary speech recognition. TASLP 20(1): 30-42, 2012.
Ermes, M., Parkka, J., Mantyjarvi, J., and Korhonen, I.: Detection of daily activ-
ities and sports with wearable sensors in controlled and uncontrolled conditions.
IEEE Trans. Inform. Tech. Biomed 12(1): 20-26, 2006.

Hinton, G. E.; and Salakhutdinov, R.: Reducing the dimensionality of data with
neural networks. Science 313(5786): 504-507, 2006.

Hung, C.-C., Peng, W.C., Lee, W.C,: Clustering and aggregating clues of trajec-
tories for mining trajectory patterns and routes. VLDB J. 24(2): 169-192, 2015.
Krizhevsky, A., Sutskever, I., and Hinton, G.: Imagenet classification with deep
convolutional neural networks. In NIPS: 1106-1114. 2012.

Le, Q. V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., and Ng, A. Y.: On
Optimization Methods for Deep Learning. In ICML: 265-272, 2011.

Liao, L., Fox, D., and Kautz, H.: Learning and Inferring Transportation Routines.
In AAAT’04: 348-353, 2004.

Parker, J.Anthony, Kenyon, Robert V., Troxel, D.: Comparison of Interpolating
Methods for Image Resampling. IEEE Trans. Med. Imag. 2(1): 31-39, 1983.
Parkka, J., Ermes, M., Korpippa, P., Mantyjarvi, J., and Peltola, J.: Activity clas-
sification using realistic data from wearable sensors. IEEE Trans. Inform. Tech.
Biomed 10(1): 119-128, 2006.

Patterson, D., Liao, L., Fox, D., and Kautz, H.: Inferring high-level behavior from
low-level sensors. In UbiComp: 73-89, 2003.

Shah, R. C., Wan, C.-Y., Lu, H., and Nachman, L.: Classifying the Mode of Trans-
portation on Mobile Phones using GIS Information. In UbiComp: 225-229, 2014.
Shaw, B., Shea, J., Sinha, S., and Hogue, A.: Learning to Rank for Spatiotemporal
Search. In WSDM: 717-726, 2013.

Song, X., Zhang, Q., Sekimoto, Y., and Shibasaki, R.: Prediction of human emer-
gency behavior and their mobility following large-scale disaster. In KDD: 5-14,
2014.

Toda, H., Yasuda, N., Matsuura, Y., Kataoka, R.: Geographic information retrieval
to suit immediate surroundings. In GIS: 452-455, 2009.

Vedaldi, A., and Fulkerson, B.: Vlfeat: An open and portable library of computer
vision algorithms. In MM: 1469-1472, 2010.

Vincent, P., Larochelle, H., Lajoie, 1., Bengio, Y., and Manzagol, P.-A.: Stacked
denoising autoencoders: Learning useful representations in a deep network with a
local denoising criterion. JMLR 11: 3371-3408, 2010.

Zheng, Y.: Trajectory Data Mining: An Overview. ACM TIST 6(3): 29, 2015.
Zheng, Y., Liu, L., Wang, L., and Xie, X.: Learning transportation mode from raw
GPS data for geographic applications on the web. In WWW: 247-256, 2008.
Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.-Y.: Understanding Mobility Based
on GPS Data. In Ubicomp: 312-321, 2008.

Zheng, Y., Chen, Y., Li, Q., Xie, X., and Ma, W.-Y.: Understanding transportation
modes based on GPS data for web applications. TWEB 4(1), 2010.

Zheng, Y. and Zhou, X., editors: Computing with Spatial Trajectories. Springer,
2011.



