
Pacific Graphics 2019
C. Theobalt, J. Lee, and G. Wetzstein
(Guest Editors)

Volume 38 (2019), Number 7

Single-View Modeling of Layered Origami
with Plausible Outer Shape

Y. Kato, S. Tanaka, Y. Kanamori and J. Mitani

University of Tsukuba, Japan

Reference image

Annotations

Initial polygons

User inputs

(Optional input)

System process

Depth ordering & assignment Shape structure integration 3D origami outputegrationt Shape st

x

x
y

y

z

Figure 1: Overview of our method. Given a reference image of a flat origami piece, the user draws polygons and assigns annotations
indicating the types of folding. Our system then determines the depth order of polygons, assigns depth values to polygons, and integrates
shape structures corresponding to the user-specified folding operations to output a 3D origami model with a plausible outer shape. The user
can repeat this process with instant feedback until satisfied.

Abstract
Modeling 3D origami pieces using conventional software is laborious due to the geometric constraints imposed by the compli-
cated layered structure. Targeting origami models used in visual content such as CG illustrations and movies, we propose an
interactive system that dramatically simplifies the modeling of 3D origami pieces with plausible outer shapes, while omitting
accurate inner structures. By focusing on flat origami models with a front-and-back symmetry commonly found in traditional
artworks, our system realizes easy and quick modeling via single-view interface; given a reference image of the target origami
piece, the user draws polygons of planar faces onto the image, and assigns annotations indicating the types of folding oper-
ations. Our system automatically rectifies the manually-specified polygons, infers the folded structures that should yield the
user-specified polygons with reference to the depth order of layered polygons, and generates a plausible 3D model while ac-
counting for gaps between layers. Our system is versatile enough for modeling pseudo-origami models that are not realizable
by folding a single sheet of paper. Our user study demonstrates that even novice users without the specialized knowledge and
experience on origami and 3D modeling can create plausible origami models quickly.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

1. Introduction

Making an origami piece by folding a sheet of paper is familiar
worldwide as a recreation that even children can enjoy. However,
modeling 3D origami pieces using conventional 3D software is la-

borious and time-consuming; theoretically, there are inherent geo-
metric constraints w.r.t. origami modeling, i.e., an origami shape be
homeomorphic to a disk because it is made of a single sheet of pa-
per, and the sum of face angles around any vertex equal 2π because

submitted to Pacific Graphics (2019)



2 Y. Kato & S. Tanaka & Y. Kanamori & J. Mitani / Single-View Modeling of Layered Origami

an origami shape consists of developable surfaces. These condi-
tions might be relaxed for the use in visual contents such as CG
illustrations and movies because, in this case, accurate geometry is
not necessary. However, a plausible outer shape matters instead; let
us consider “origami animals” as an example. With a quick Google
image/video search, we can see that they are popular motifs of il-
lustrations/animations and often represented as mirror-symmetric
flat shapes. Such flat origami can be completely flattened by def-
inition if we ignore thickness, but, in the real world, even a flat
origami piece has a certain thickness due to the small gaps be-
tween layers of sheets. Therefore, for modeling a realistic origami
shape, we should handle such interlayer gaps while avoiding self-
intersections between layers, which is quite tedious to do if we use
conventional software.

Targeting flat origami with a front-and-back symmetry typified
by popular origami animals, we propose an interactive system that
dramatically simplifies the modeling of flat origami by omitting
accurate inner shapes. The user can model plausible outer shapes
easily and quickly via a single-view interface; given a reference
image of the target origami piece, the user draws polygons of the
planar faces onto the image and annotates the polygons to specify
the types of folding operations using simple mouse gestures (see
Figure 1). The user inputs polygons and annotations in a 2D-view
window, and confirms the resultant 3D origami model in a 3D-view
window with real-time feedback against user inputs.

Our system assists the user and calculates outer shapes auto-
matically (Figure 1) from user inputs as follows. First, every time
the user draws polygons, our system tries to adjust user-specified
edges and vertices to existing ones for rectification (Section 5.1).
Second, every time the user annotates polygon edges, our system
automatically infers an appropriate folding operation that matches
the annotation, which is the crucial feature of our system for effi-
cient modeling. The folding operations supported in our system are
commonly-used seven types of operations and a duplicating op-
eration called mirroring (Section 3). The selected folding opera-
tion might induce geometric constraints to the configuration of in-
put polygons, and thus our system checks whether such constraints
are satisfied, and otherwise rectifies mis-aligned polygons automat-
ically (Section 5.3). The selected folding operation also determines
the local depth order among adjacent polygons. Our system main-
tains the depth order as a directed graph and updates it according
to the annotations. By referring to the depth order, our system adds
interlayer gaps to our origami model to form a realistic shape (Sec-
tion 5.2). Finally, our system integrates the current origami model
with the shape structure derived from the selected folding operation
while resolving the depth order (Section 5.4).

In summary, the main contributions of this paper are as follows.

• The novel paradigm in the system design of origami modeling,
i.e., forming plausible outer shapes quickly by omitting compli-
cated inner structures,

• The single-view interface with simple annotations for modeling
flat origami with a front-and-back symmetry, and

• The gap-aware modeling for realistic origami shapes based on
the depth order of polygons.

Besides, because our system provides higher degrees-of-freedom
in the shape design than conventional systems, the user can create

even pseudo-origami models that are not realizable in the real world
by folding a sheet of paper. By comparing with conventional soft-
ware, we show that our system yields simpler yet plausible origami
models with fewer polygons in much shorter time. Our simplified
models are also advantageous in creating animations because self-
intersections occur less frequently and less shape manipulations are
required to specify keyframes. Our user study demonstrates that
even novice users without the specialized knowledge and expe-
rience on origami and 3D modeling can create plausible origami
models quickly.

2. Related Work

2.1. 3D modeling via 2D-based user interface

Modeling systems with a 2D user interface simplifies the 3D mod-
eling of specific types of shapes. Sketch-based 3D modeling sys-
tems, e.g., [IMT99, NISA07], typically let the user draw 2D con-
tours of the target shapes, and then the systems inflate the con-
toured regions to create organic shapes such as characters and an-
imals. Whereas aforementioned 3D modeling systems enforce the
user to change viewpoints frequently during modeling, single-view
modeling (i.e., with a fixed viewpoint) is possible by focusing on
specific targets, e.g., quadruped animals [EBC∗15]. Bessmeltsev
et al. [BCV∗15] demonstrated that plausible 3D shapes contain-
ing occluded parts can be created from a single sketch of contours
with the aid of a 3D skeleton and Gestalt principles. Gingold et
al. [GIZ09] proposed a generic single-view modeling system where
the user places generalized cylinders as shape primitives and sev-
eral types of 2D annotations onto a reference image.

While these modeling systems target organic shapes, we focus
on flat origami pieces consisting of layered structures of flat polyg-
onal faces. Our system also allows single-view modeling with 2D
annotations, but our annotations are specialized for specifying the
folding operations.

Igarashi and Mitani [IM10] proposed an interesting method for
manipulating the depth order of layered nearly-flat objects in a sin-
gle view. The user can change the depth order of layers just by
clicking or dragging a layer. Entem et al. [EPB∗19] proposed a
method that interprets a 2D sketch as elements layered in depth by
making use of a graph giving local depth ordering information. Al-
though their methods are similar to ours, they do not account for
the folded shapes of origami.

2.2. Physically-based modeling of paper

An intuitive direction of modeling origami would be to simu-
late the physical behaviors of paper. Paper is non-stretchable, and
the shapes made of paper consist of developable surface patches.
There exist many methods for modeling or simulating developable
surfaces [MYYT96, RSW∗07, PDRK14, TBWP16]. Recent meth-
ods [NPO13] based on the finite element method can even han-
dle not only folding but also crumpling of developable surfaces.
A similar interactive method for crumpling paper [SRH∗15] is
mostly based on geometric modeling rather than finite element sim-
ulation. The folding mechanisms of rigid panels are discussed in
the subarea called rigid folding in origami engineering and have

submitted to Pacific Graphics (2019)



Y. Kato & S. Tanaka & Y. Kanamori & J. Mitani / Single-View Modeling of Layered Origami 3

been studied extensively in parametric regular patterns, e.g., Miura-
ori [GP94, YKD11, Sta12]. Miyamoto et al. [MEKM17] proposed
a semi-automatic method for making a polygonal 3D shape flat-
foldable by approximating it as multiple convex components with
vertically-connected rigid panels. Alternatively, there is a method
for reconstructing the folded shapes of paper with curved creases
from point clouds [KFC∗08]. Contrary to the aforementioned meth-
ods, our target shapes are neither rigid-foldable in general nor
curved.

2.3. Origami shape modeling

Existing simulators of origami assist the user in simulating the
sequence of real-world folding operations from an initial shape
(usually a square) and have a long history of research [MYYT96,
FKMF07]. Such simulators help the user reproduce folded shapes
faithfully with a simple user interface. However, mouse-based ma-
nipulation of folds occurring simultaneously is intrinsically diffi-
cult compared to hand-based manipulation in the real world, and
thus the user often struggles with modeling even flat origami mod-
els that we target in this paper.

There have been proposed methods for modeling flat origami.
Lang’s TreeMaker [Lan11] is one of the famous software for de-
signing flat origami. Given a 2D skeleton of a target shape, it gen-
erates a crease pattern automatically but does not account for the
depth order of faces. The software for editing crease patterns of flat
origami, ORIPA [Mit05], has a feature for generating a shape after
folding while accounting for the depth order. Ida et al. [IMKG09]
developed a system for generating folded shapes based on formal
expressions of folding processes. Tess [Bat07] is the software for
designing origami tessellations, i.e., geometric tiling patterns that
can be folded flat.

A problem with these methods is that their output shapes look
unrealistic because they ignore thickness and thus become com-
pletely flat. In contrast, flat origami models in the real world have
certain thickness, as mentioned in Section 1. A workaround is to
manually add offsets to vertex positions with reference to the depth
order of layered paper sheets while avoiding self-intersections,
which is quite tedious. Additionally, the shapes generated by ex-
isting systems contain complicated inner structures, which are in-
visible and thus not necessary for the use in visual contents. Unnec-
essary inner structures increase the time required for modeling. Our
system thus omits accurate inner structures and generates plausible
outer shapes quickly.

Tachi [TAC10] proposed a method that outputs a single-sheet
folding pattern from an arbitrary polyhedral surface. The folding
patterns consist of not only the original facets but also tucks as-
signed to fill the gaps. His goal is to generate folding patterns
that are physically foldable. In contrast, our system also supports
origami models that are not physically foldable.

3. Preliminary: Operations Supported in Our System

In this section, we describe the seven types of folding operations
and the duplicating operation supported in our system.

Our system supports flat origami with a front-and-back symme-
try; the back shape is the mirror image of the front shape. This

Figure 2: Photos of the folded shapes made by corresponding fold-
ing operations. Note that inside/outside reverse folds can be re-
garded as identical operations, and thus we rename them as “re-
verse fold” in this paper.

condition is commonly observed in traditional origami pieces. For
example, in the collection of 58 traditional pieces in the book
Japanese Origami Encyclopedia [Yam95], 40 pieces satisfy the
condition. Our further investigation revealed that as many as 38
pieces of them can be created by only seven types of folding opera-
tions and their compositions. Motivated by this finding, we decided
to support the following eight types of operations, i.e., simple fold,
tucking, sink fold, inside reverse fold, outside reverse fold, pleat
fold, pig’s leg, and mirroring. Note that the names of folding op-
erations are commonly used in the origami community except for
“pig’s leg” and “mirroring”, which we named because they do not
have common names.

Figure 2 shows the example shapes obtained by the seven fold-
ing operations. We explain each operation as follows. Figures in
Section 5.4 show the detailed geometry of each folding operation.

Simple fold is the simplest operation to create a single mountain
or valley fold along a straight crease line. In our results, this
operation is often used to create, e.g., the back of animals.

Tucking pushes paper edges inward, often used for adjusting outer
shape and beautifying the silhouette

Sink fold crushes and pushes a part of the origami shape inward.
As a result, the pushed part is inverted and invisible from the
outside.

Inside reverse fold makes a triangle at a tip of the origami piece
by pushing a crease inward. It is often used to make the shapes
of bird’s beaks or animal’s limbs.

Outside reverse fold opens a tip of a crease and folds it back. This
operation makes a part of the crease covered.

Pleat fold creates a step on a face by pushing a part of the face
inward.

Pig’s leg is often used to create the legs of various animals, e.g.,
pig by lifting up polygon faces.

Mirroring is not a folding operation but a duplicating operation
for grouped polygons to create mirror-symmetric counterparts
(shown in yellow in Figure 2), which is used in complicated
models.

submitted to Pacific Graphics (2019)



4 Y. Kato & S. Tanaka & Y. Kanamori & J. Mitani / Single-View Modeling of Layered Origami

Note that, among the eight operations, “inside/outside reverse
fold” can be regarded as the same operation by swapping the
folded-back part and the remaining part. Hence we regard them
as identical operations and rename them as “reverse fold,” which
reduces the number of internal representations of supported oper-
ations from eight to seven. Hereafter we discuss the seven opera-
tions.

4. User Interface

Our system provides two windows; one is for a 2D view and the
other for a 3D view. In the 2D window, the user inputs a refer-
ence image if available, draws polygons, and annotates the poly-
gons (Section 4). The user can inspect the resultant origami model
in the 3D window. In the initial state, the origami model is rep-
resented as a pair of flat front and back polygons. The shape of
the model is then updated according to the user-specified annota-
tions. The inputs to our system are the initial polygons of the target
origami and annotations to specify folding operations, as explained
below.

4.1. Initial polygons of target origami

First of all, the user inputs the initial polygons that define the outer
shape of the target origami in the flat state by clicking vertex posi-
tions (on a reference image if available). The polygon edges repre-
sent the paper edges and creases visible from the outside to define
geometric shapes of individual polygons. In this step, we do not
distinguish whether the user-specified edges are the paper edges or
creases. Every time the user draws a polygon, the system rectifies
the shape (Section 5.1).

Note that, if a reference image is available, automating this man-
ual step would be possible using combination of image processing
and machine learning (e.g., line detection and segmentation), which
is out of the scope of this paper.

4.2. Annotations for specifying folding operations

The user specifies annotations among the seven candidates corre-
sponding to the folding operations (i.e., simple fold, tucking, sink
fold, reverse fold, pleat fold, pig’s leg, and mirroring) by clicking
and dragging edges or faces. Our system then calculates the folded
shape (Section 5.4).

Figure 3 summarizes the folding operations, mouse gestures, an-
notations supported by our system, and resultant shapes. The anno-
tations in our paper are distinguished by colors, i.e., red for simple
fold, green for tucking, blue for sink fold, cyan for reverse fold, ma-
genta for pleat fold, orange for pig’s leg, and yellow for mirroring.
Note that reverse fold and pig’s leg lead to additional simple folds
automatically, as shown in the annotations in the fourth and seventh
rows. Also note that “reverse fold” and “pleat fold” are specified by
the same mouse gesture of a drag between two polygons, but our
system recognizes them automatically; if the two polygons share
one vertex, our system selects “reverse fold” and otherwise selects
“pleat fold”. Consequently, the number of annotations that the user
should remember is reduced from seven to six.

Figure 3: Mouse gestures, annotations, and geometric structures
corresponding to folding operations. The annotations are distin-
guished by colors in our paper. For reverse fold and pig’s leg, sim-
ple folds are added automatically.

5. Generating a 3D Origami

Given the user inputs, our system constructs a 3D origami model
as follows. First, every time the user inputs a polygon, our sys-
tem rectifies the current shape by merging nearby vertices or edges
(Section 5.1). Second, every time the user inputs an annotation, our
system infers a folding operation and maintains the depth order of
polygons as a directed graph (Section 5.2). Meanwhile, our system
checks whether the input polygons satisfy the geometric constraints
induced by the inferred folding operation, and otherwise rectifies
mis-aligned polygons (Section 5.3). Finally, our system integrates
the 3D shape structure corresponding to the user-specified folding
operation (Section 5.4). Here we explain the details.

5.1. Rectification of initial polygons

To rectify possible mis-alignments of the manually-specified initial
polygons, our system checks whether each of the following condi-
tions is satisfied in the following order, and modifies vertex posi-
tions if satisfied.

i) Parallel edges (Figure 4, left). If the angle between edge e1 of
the new polygon and edge e2 of an existing polygon is less than
threshold εa, e1 is adjusted so that e1 becomes parallel to e2. This
is accomplished by moving e1’s endpoint (that is farther from e2)
along the normal direction of e2.

submitted to Pacific Graphics (2019)



Y. Kato & S. Tanaka & Y. Kanamori & J. Mitani / Single-View Modeling of Layered Origami 5

e1

εa

εd1

εd2e2 e2e1
v1 v1v2 v2

e2 e2e1 e1

i) Parallel edges ii) Collinear edges iii) Coinciding vertices

Figure 4: Rectification of initial polygons. The user-specified poly-
gons are modified if the conditions are satisfied.

ii) Collinear edges (Figure 4, middle). If edge e1 of the new
polygon and edge e2 of an existing polygon are parallel and the
distance between them is less than threshold εd1 , e1 are moved
along the normal direction of e2 so that they become collinear.

iii) Coinciding vertices (Figure 4, right). If the distance between
vertex v1 of the new polygon and vertex v2 of an existing polygon
is less than threshold εd2 , v1 is moved to the same position as v2.

In our system, we set εa = 10◦ and εd1 = εd2 = 10 pixels for
a screen of 800 × 600 pixels. Note that condition i) is applied
only to nearby edges; we apply condition i) if 0.2 min(|e1|, |e2|)>
dist(e2,v1) and 0.2 min(|e1|, |e2|) > dist(e2,v2), where v1 and v2
are the closer endpoints of e1 and e2 respectively, and |e| denotes
the length of edge e and dist(e2,v) the distance between e2 and
v. We just check and apply the conditions sequentially, and thus
any race condition does not occur. Additionally, when the user em-
ploys mirroring, polygons belonging to the same mirrored group
are only rectified among themselves because each group should be
duplicated independently.

5.2. Depth order and thickness representation

To determine the 3D origami shape with thickness, we must know
which polygon should be in front of or behind other adjacent poly-
gons. Such depth order of polygons must be maintained consis-
tently against the sequence of user-specified folding operations.
Our system maintains the depth order as a directed graph where
each node corresponds to a polygon and each directed edge rep-
resents that a polygon is in front of the other adjacent polygon.
Note that directed edges are assigned only among adjacent poly-
gons, and thus the relationships are local. We do not handle folding
operations that cause cyclic relationships, e.g., twist fold, and thus
the graph consists of one or more trees whose root node(s) lie(s)
on top of other polygons. In the beginning, each node is indepen-
dent, and there are no directed edges. The directed graph is updated
every time the user specifies an annotation.

For explanation, we define a right-handed coordinate system
where the screen corresponds to the xy plane whose origin lies in
the lower-left corner of the screen, and the positive z direction cor-
responds to the direction from the screen to the viewer. The sym-
metry plane of the front-and-back symmetry corresponds to the xy
plane (i.e., the screen). Hereafter we only consider the polygons

with positive z coordinates because of the front-and-back symme-
try. If polygon Fa is located above polygon Fb, i.e., Fa has a larger
z coordinate than Fb, this relationship is denoted as a directed edge
Fa → Fb.

Among the seven operations supported by our system, reverse
fold, pleat fold, and pig’s leg determine the local depth order. On
the other hand, simple fold, tucking, and sink fold do not change the
depth order because these operations only connect polygons with
their mirror-symmetric counterparts. As an exception, only mirror-
ing creates a new sub-graph whose elements are the polygons in
the polygon group. The new sub-graph does not affect the ordering
of other nodes in the original graph. If the user annotates one of the
three operations, our system adds one or two directed edges. Specif-
ically, if the user specifies reverse fold or pleat fold by dragging
from polygon Fa to polygon Fb, our system assigns a new depth
order Fa → Fb. If the user annotates pig’s leg, three polygons are
involved (Figure 3, bottom row). Let Fa be the polygon where the
mouse-drag trajectory lies, Fs and Fe be the polygons close to the
starting and ending points of the trajectory, respectively. For pig’s
leg, our system assigns two relationships Fa → Fs and Fa → Fe.

We explain how the directed graph is updated with an exam-
ple shown in Figure 5. In this example, the four annotations (Fig-
ure 5(a)) determine the depth order; three reverse folds between (1)
Fa and Fb, (2) Fb and Fc, and (3) Fe and Ff , as well as (4) pig’s
leg among Fc, Fd , and Fe. Figure 5(b) shows the step-by-step illus-
trations how the directed graph is updated according to the anno-
tations (1)-(4) in Figure 5(a). With three reverse folds (1)-(3), di-
rected edges (1) Fb → Fa, (2) Fc → Fb, and (3) Fe → Ff are added,
respectively. Similarly, with pig’s leg (4), directed edges Fd → Fc
and Fd → Fe are added. As is apparent from this example, the final
graph structure does not depend on the order in which annotations
are specified.

Now we explain how to assign depth offsets to layered polygons
in order to represent thickness due to interlayer gaps. Let di be the
distance from tree’s root node to node i (i.e., polygon i, where i ∈
{1,2, . . . ,N} and N is the number of nodes), and dmax be the height
of the tree defined as dmax = maxi di. Our system calculates the z
coordinate zi of polygon i as follows:

zi = ∆d (dmax −di +1), (1)

where ∆d is the user-specified coefficient that defines the unit gap
width between successive layers. For example, if we set ∆d = 1,
{zi} of polygons from Fa to Ff in Figure 5(a) become 1, 2, 3, 4,
3, and 2, respectively. After calculating zi, our system translates
polygon i along the z direction, and applies further modifications
corresponding to folding operations, as described in the next sub-
sections. When mirroring is specified, a polygon group is translated
so that it is attached to another group and then rotated around the
attached edge, as described in Section 5.4.7

5.3. Constraint-based polygon rectification

After a folding operation is specified, our system checks whether
the manually-specified polygons satisfy the geometric constraint(s)
induced by the folding operation. If not, our system rectifies the
vertex positions of the input polygons automatically. Our system
supports such rectifications for reverse fold and pleat fold.

submitted to Pacific Graphics (2019)



6 Y. Kato & S. Tanaka & Y. Kanamori & J. Mitani / Single-View Modeling of Layered Origami

Fe

Fd

(2)

(2)

(1)

(1)

(a) Polygons with annotations (1) - (4)

(b) Step-by-step illustrations of updated depth-order graphs

(3)

(3)

(4)

(4)

Ff

Fc

Fb
Fa

Fc Fd Fe Ff

Fa

Fd Fe Ff

Fa

x

y

Fd

Fa

FeFc

Fb

Fb Fc

Fb

Fc

Fd

Fb

Fe

Ff

Fa

Ff

Figure 5: Construction of a directed graph of the depth order of
polygons. (a) The user-specified annotations (1) - (4) sequentially
update (b) the graphs accordingly. The specified order of annota-
tions does not affect the resultant depth order.

The left image of Figure 6(a) illustrates the geometric con-
straint of reverse fold. Triangles △v2v4v5 and △v′1v4v5 show the
ideal configuration before and after reverse fold, respectively; they
should be symmetric w.r.t. crease line v4v5. However, the user-
specified triangle △v1v3v5 (blue) is not aligned to the ideal triangle
△v′1v4v5 in this case. Our system thus moves vertex v1 to v′1 and
vertex v3 to v′3 after the annotation is specified. If the shape be-
fore folding is an n-gon (n > 3) (Figure 6(b)), our system moves v3
and v5 so that they are aligned with the ideal mirror image, while
keeping the lengths of the line segments connected to v3 and v5.

In pleat fold (Figure 6(c)), the angle between e3 and e4 should be
equal to the angle between e1 and e2 because the shape before fold-
ing is a single triangle. However, the user-specified triangle con-
sisting of e3 and e4 does not satisfy this constraint in this case.
Under the assumption that e1 and e3 as well as e2 and e4 often be-
come parallel in real origami pieces, our system fixes v2 and v3, and
translates vertex v1 to v′1 so that the parallel-edge assumption is sat-
isfied, after the annotation is specified. If the shape before folding
is an n-gon (n > 3) (Figure 6(d)), our system also fixes v2 and v3,
and moves the endpoints of e3 and e4 other than v2 and v3 so that

Figure 6: Constraint-based polygon rectification for reverse fold
((a) and (b)) and pleat fold ((c) and (d)). The user-specified poly-
gons (blue) are modified (red) to satisfy the geometric constraints.

e3 and e4 become parallel to e1 and e2, respectively, while keeping
the lengths of e3 and e4.

5.4. Shape construction based on annotations

After calculating the initial depth zi (Equation (1)) for each poly-
gon i, our system modifies polygon shapes according to the user-
specified annotations by moving vertex positions and completing
gaps with new polygons. As shown in the rightmost column in Fig-
ure 3, a pair of mirrored shapes are transformed according to each
of the seven operations, as described below. Note that we explain
pleat fold and pig’s leg for polygons only on the positive z side
because they are symmetric w.r.t. the xy plane.

5.4.1. Simple fold

For a simple fold, we must satisfy the constraint that the mirrored
pair of front and back shapes must be connected via a crease line.
To express a fold line and interlayer gap, our system inserts an elon-
gated polygon along the crease to connect each mirrored pair. Let
e be the clicked edge, e′ be the edge symmetrical to e, {v1, v2}
and {v′1, v′2} be the pairs of the endpoints of e and e′, respectively.
From the unconnected initial state, our system modifies the shape
as follows (Figure 7).

Step 1: Bring edges e and e′ closer to each other by multiplying
their z coordinates with coefficient α ∈ (0,1). α is set as 0.1 by
default, and can be changed by the user.

Step 2: Add a thin quad □v1v2v′2v′1 to connect edges e and e′.

Figure 7: Structure of simple fold. The pair of front and back poly-
gons are connected with a thin quad.

5.4.2. Tucking

Tucking pushes polygons inward, and thus we must determine the
tucked depth, which cannot be observed from the outside. Assum-
ing that the accurate depth of tucking is not required to generate

submitted to Pacific Graphics (2019)



Y. Kato & S. Tanaka & Y. Kanamori & J. Mitani / Single-View Modeling of Layered Origami 7

plausible outer shapes, we determine the tucked depth empirically.
Let e be the edge where the dragging starts, eprev and enext be the
edges previous and next to e clockwise around the face adjacent to
e. We also define e′, {v1, v2} and {v′1, v′2} similarly to the case of
a simple fold. Our system calculates the tucked shape as follows
(Figure 8).

Step 1: Generate two vertices va and vb. va and vb are located on
the xy plane along the projections of two half-lines emanating
from v1 and v2 along eprev and enext , respectively (Figure 8, left).
The distance from the plane v1v2v′2v′1 to vertex va (or vb) is
determined by the tucked depth dtucking. In our system, we set
dtucking = 0.25 |eprev| (Figure 8, right).

Step 2: Add two quads □v1v2vbva and □v′1v′2vbva.

Figure 8: Structure of tucking. The pair of front and back polygons
are connected with “V”-shaped polygons.

5.4.3. Sink fold

Similarly to tucking, the depths of sink folds cannot be observed
from the outside, and thus we determine the depths empirically. In
addition to the definitions above, let v4 and v3 be the endpoints of
eprev and enext other than v1 and v2, respectively. We also define v′3
and v′4 as the mirrored counterparts of v3 and v4. The structure of
sink fold is then calculated as follows (Figure 9).

Step 1: Generate five vertices va, vb, vc, vd , and ve. va and vb are
located along a line parallel to e such that their midpoint is the
centroid of {v1,v2,v

′
1,v

′
2}. The distance between va and vb is

determined by dsink. In our system, we set dsink = 0.1 |e|. vc and
vd are determined similarly with the centroid of {v3,v4,v

′
3,v

′
4}.

ve is the centroid of {va,vb,vc,vd}.
Step 2: Add six triangles △v1vev2, △v1vave, △v2vevb, △v′1vev′2,

△v′1vave, and △v′2vevb, and four quads □v1v4vcva, □v2vbvdv3,
□v′1v′4vcva, and □v′2vbvdv′3 (Figure 9, left). The right image of
Figure 9 illustrates the edge connections.

5.4.4. Reverse fold

In reverse fold, faces are also pushed inward but the pushed depth
is constrained, unlike tucking and sink fold. Let F1 and F2 be the
polygons where the mouse drag starts and ends. Suppose that F1
and F2 are already assigned different z coordinates (Section 5.2).
On polygon F2, let e2 be the edge where F1 and F2 touch each other,
{v2,v4} be e2’s endpoints at the tip and the other side, and e4 be
another edge connected to v4. On polygon F1, let v1 be the vertex
that has the same x,y coordinates as v2, e1 be the edge connected to
v1 along the outline of the whole shape, and v3 be the other endpoint
of e1. Reverse fold is then realized as follows (Figure 10).

Figure 9: Structure of sink fold. The right image illustrates the edge
connections.

Step 1: Merge v1 and v2 by choosing either one having the larger
z coordinate. Hereafter we assume v1 is chosen.

Step 2: Add triangle △v1v3v4.
Step 3: Apply the operations of simple fold to both e3 and e4.

Figure 10: Structure of reverse fold. The right image shows a side
view from positive x direction.

Note that in rare cases the edge that simple folds should be ap-
plied to (i,e., edge e3) might be hidden (Figure 11), where the
above procedure does not work. To handle this problem, we skip
Step 3 for such a hidden edge. Note that, even if Step 3 is omitted,
the paired polygons that form the bird’s head are not disconnected
thanks to the simple fold at its beak. The user can also specify more
folding operations if necessary.

Simple fold

Without hidden simple fold With hidden simple fold

Simple fold

Hidden simple fold

Reverse fold Reverse fold

Figure 11: Problematic case of reverse fold. If the edge to which
simple fold should be applied is hidden (right), we ignore Step 3
for such an edge.

submitted to Pacific Graphics (2019)



8 Y. Kato & S. Tanaka & Y. Kanamori & J. Mitani / Single-View Modeling of Layered Origami

5.4.5. Pleat fold

Pleat fold generates polygons having different z coordinates from a
single polygon. Suppose that polygons F1 and F2 are defined simi-
larly to reverse fold, and assigned the relationship F1 → F2 and cor-
responding z coordinates (Section 5.2). Let e1 and e2 be the edges
on F1 and F2 where F1 and F2 touch each other, respectively. On
polygon F2, let e′2 and e′′2 be the edges that share endpoints with e2.
Pleat fold is realized as follows (Figure 12).

Step 1: Generate two vertices va and vb. va and vb are on the lines
extended from e′2 and e′′2 , and are determined so that segment
vavb and e2 become parallel and the distance between them be
dpleat (Figure 12, right). In our system, we set dpleat as half the
length of the shorter edge of the two edges that share e1’s end-
points.

Step 2: Add the hidden face adjacent to e1 (shown in orange in
Figure 12, left).

Step 3: Enlarge F2 along e′2 and e′′2 so that F2 touches segment
vavb.

Figure 12: Structure of pleat fold. One polygon is added and F2 is
enlarged to connect F1 and F2.

5.4.6. Pig’s leg

Pig’s leg generates leg-like shapes by lifting polygon structures. Let
F1 be the polygon where the mouse-drag trajectory lies, and F2 and
F3 be F1’s adjacent polygons close to the starting and ending points
of the trajectory, respectively. Suppose that polygons F1, F2, and F3
are assigned different z coordinates according to the relationships
F1 → F2 and F1 → F3 (Section 5.2). We further define edges e1, e2,
and e3 on F1, F2, and F3, respectively; e1 and e2 are the edges close
to the starting point of the trajectory while e3 is close to the ending
point. e1, e2, and e3 have vertices whose x,y coordinates are the
same but z coordinates are different. Similarly to reverse fold, we
merge the three vertices by choosing either one having the largest
z coordinate and denote the chosen one as v. Let e′1 and e′2 be the
edges on F1 and F2 that share endpoints with e1 and e2 but do not
share v, respectively. Pig’s leg is realized as follows (Figure 13).

Step 1: Merge the three vertices of e1, e2, and e3 that share the
same x,y coordinates to generate v, as explained above.

Step 2: Generate two vertices va and vb. va is located where e′2 is
extended toward F1 by distance dpig1 while vb is above va by
distance dpig2 toward positive z direction. In our system, we set
dpig1 as half the distance between two endpoints of e2 and e3
other than v, and dpig2 as half the distance between F1 and F3.

Step 3: Add three triangles consisting of i) va and e1’s both end-
points, ii) vb and e3’s both endpoints, and iii) vb and both end-
points of the edge connected to v other than e1 on F1.

Step 4: Enlarge F2 along e′2 so that F2 touches va.

Figure 13: Structure of pig’s leg. The right image shows the view
from negative y direction.

5.4.7. Mirroring

In mirroring, polygon groups are specified by the user, each group
is attached to another group at a single edge, and the attached group
is duplicated to create its mirror-symmetric counterpart. Polygon
grouping is enabled by explicitly specifying the grouping mode in
our system. Attaching a group to another is specified by a mouse
drag (Figure 3, bottom). Let e1 and e2 be the edges where the drag-
ging starts and ends, and e′1 be the mirror-symmetric counterpart of
e1. We also define e′′1 as an edge at the middle of e1 and e′1, which is
always on the xy plane. Mirroring is realized as follows (Figure 14).

Step 1: Merge e1 and e′1 into e′′1 (Figure 14(1)).
Step 2: Translate the merged edge e′′1 to e2 while keeping the

shape of the polygon group (blue) (Figure 14(2)).
Step 3: Rotate the polygon group around edge e2 by angle amirror

(Figure 14(3)). amirror is set as 15◦ by default, and can be
changed interactively by the user.

Step 4: Duplicate the polygon group to create a mirror-symmetric
counterpart (Figure 14(4)).

Figure 14: Construction process of mirroring (viewed from +x di-
rection). A polygon group (blue) is moved and duplicated.

submitted to Pacific Graphics (2019)



Y. Kato & S. Tanaka & Y. Kanamori & J. Mitani / Single-View Modeling of Layered Origami 9

6. Results

Our prototype system was implemented in C++ with OpenGL and
Qt libraries and run on an off-the-shelf PC. The screen sizes for
2D- and 3D-view windows are both 800× 600 pixels. If the refer-
ence image is larger than the screen size of the 2D-view window,
the image is fitted to the screen by uniform scaling. Among the
parameters in our system, ∆d (Section 5.2) and amirror (Section
5.4.7) are the most important to determine the overall outer shape.
Whereas the user can change any parameters interactively, we only
changed ∆d and amirror and kept other parameters fixed in all of our
results. Please refer to our accompanying movie for captured demo
videos and a detailed comparison with the origami model created
using Maya.

The origami pieces in our results are traditional artworks selected
from the book [Yam95]. We used reference images for all the re-
sults. Our origami models were created using our system, but the
images in our results were rendered with textures using the stan-
dard 3D software, Autodesk Maya [Aut]. Table 1 summarizes the
statistics of the origami models created using our system. The types
of annotations used in our results are visualized by the colors il-
lustrated in Figure 3. Figure 15 shows seven examples of animal
origami models created using our system.

Table 1: Statistics of our origami models. #Folds denotes the num-
bers of folding operations required when we create corresponding
physical origami pieces, #Anno. the numbers of annotations, #Poly
the numbers of polygons (generated initially and finally), respec-
tively.

#Poly
Origami models #Folds #Anno. Initial Final
Fur seal (Fig. 1) 14 4 6 28
Knot (Fig. 15) 11 2 5 24
Elephant (Fig. 15) 26 10 6 34
Dragon (Fig. 15) 142 25 15 98
Snail (Fig. 15) 17 7 5 33
Tiger (Fig. 15) 69 15 10 71
Crow (Fig. 15) 24 9 7 44
Fowl (Fig. 15) 18 4 7 29
Mandarin duck (Fig. 16) 20 4 4 18
Pig (Fig. 16) 15 5 6 30
Bird (Fig. 16) 16 5 5 22
Tangram (Fig. 18) (n/a) 5 5 24
Tangram (Fig. 18) (n/a) 9 7 32
Penguin (Fig. 20) 17 3 5 24
Carp (Fig. 20) 12 5 4 20
Knot (Fig. 20) 19 7 6 27

6.1. Comparison with conventional modeling software

To evaluate the plausibility of the origami models created using our
system, we compared them with models with accurate inner struc-
tures created manually using Maya, and physical origami pieces.
Figure 16 shows the resultant origami models (i.e., “Mandarin
duck”, “Pig”, and “Bird”) while Figure 17 shows the correspond-
ing crease patterns, i.e., the unfolded results of the origami models.

Figure 15: Examples of origami animals created using our system.

The color in the crease patterns indicates the visibility of each face;
from blue to red, fully visible from outside, slightly hidden, largely
hidden, and fully hidden. As we can see from Figure 16, the outer
shapes of our origami models are similar to those created using
Maya and real origami pieces. On the other hand, from Figure 17,
we can see that our origami models consist of fewer polygons. Re-
garding the complexity of the inner structures, the maximum num-
bers of stacked layers are {12,12,16} for the Maya models while
{6,6,6} for our models. The tree heights dmax (Section 5.2) of our
models are {3,3,3}. These models were created by one of the au-
thors, and the time spent for creating each model is one or two
minutes using our system and more than one hour using Maya.

6.2. Modeling of pseudo-origami model

We demonstrate the wide applicability of our system by modeling
pseudo-origami models. Figure 18 shows that plausible origami-
like models can be created from the image of tangram puzzles and
Figure 19 shows the corresponding unfolded pattern for Figure 18.

submitted to Pacific Graphics (2019)



10 Y. Kato & S. Tanaka & Y. Kanamori & J. Mitani / Single-View Modeling of Layered Origami

Maya models Ours Photos

M
an

d
ri

n
 d

u
ck

P
ig

B
ir

d

Figure 16: Comparisons with models created using Maya and our
system as well as photos of physical origami pieces. The models
by Maya have accurate inner structures. Ours have outer shapes
similar to the counterparts.

Note that these models cannot be realized by folding a sheet of
paper because it consists of un-developable surfaces; the sum of
face angles exceeds 2π at some vertices. To fabricate physical mod-
els, several polygons must be separated as shown in Figure 19.

6.3. User studies

Evaluation of the usability of our system. We conducted a user
study where seven subjects were requested to create origami mod-
els using our system. Four of them were familiar with origami while
the others have experience of origami only in their childhood. Af-
ter ten-minute tutorials, the subjects were first requested to create
physical origami models in the real world, and then started to model
“Penguin”, “Carp”, and “Knot” until they got satisfied. Figure 20
shows typothe resulting models created by one of the subjects. Ta-
ble 2 summarizes the statistics of the times required for creating
the models. Drawing initial polygons does not seem laborsome be-
cause all the subjects finished this task within one minute and no
subjects reported difficulty. Also, all subjects could recognize what
types of annotations should be specified, which indicates that the
tutorial and preliminary physical origami modeling were sufficient
even for novice users to exploit our system. We had expected that
the required time would depend on the knowledge of folding opera-
tions. Surprisingly, however, the average time was one minute, and
we could not observe large differences between the familiar and the
novice.

Comparison with a generic system for origami modeling.
We also requested two subjects to use a generic modeling sys-
tem [FKMF07] to create the models same as Figure 20. The system
of [FKMF07] is designed to faithfully trace the manual folding pro-
cess for modeling general origami models. The subjects suffered
from self-intersections during modeling (e.g., Figure 21), and took

M
an

d
ri

n
 d

u
ck

P
ig

B
ir

d

Maya models Ours

Visible

Hidden

Figure 17: Crease patterns (i.e., unfolded models) with colors en-
coding visibility for models created using Maya and our system.
Our results have fewer polygons and most polygons are visible from
outside.

Figure 18: Pseudo-origami models created from reference images
of tangram puzzles.

about 15 minutes on average for each model, which is about 7.5
times longer than using our system.

7. Discussion

Here we summarize the limitations and expressivity of our system.
Due to our assumptions, our system does not support shapes that
are not mirror-symmetric or have trees with cyclic depth orders. If
the user tries to create models with cyclic depths, our system will
output separate trees whose depths are all one. Also, our system
currently does not have a mechanism to avoid self-collisions. For-
tunately, self-collisions are not noticeable in most of our results.

submitted to Pacific Graphics (2019)



Y. Kato & S. Tanaka & Y. Kanamori & J. Mitani / Single-View Modeling of Layered Origami 11

Table 2: Times (in seconds) required for inputing polygons and annotations in our user study with seven subjects.

Models Polygons Annotations
Average Std.dev. Median Average Std.dev. Median

Penguin 36.3 8.8 40.0 32.4 11.6 30.0
Carp 29.1 9.4 25.0 46.0 7.2 43.0
Knot 38.3 12.3 38.0 49.4 11.6 50.0

Figure 19: Unfolded pattern of the pseudo-origami model shown
in Figure 18, bottom.

P
en

g
u
in

C
ar

p
K

n
o
t

Ref. images Annotations 3D views

Figure 20: Origami models created in our user study.

Although our system only supports the seven types of folding
operations and a duplicating operation, the expressivity is larger
than expected; by emulating non-supported operations with sup-
ported ones, we can still create plausible shapes (e.g., the legs of
the Tiger model in Figure 15 and the accompanying video). More-

Figure 21: Carp model created using the system of [FKMF07]. The
blue ovals indicate self-intersections.

over, as demonstrated in Section 6.2, our system can also handle
shapes that are not physically realizable.

8. Conclusion

In this paper, we have proposed an efficient system for modeling
flat origami pieces in a single view, while omitting accurate inner
structure yet accounting for the thickness due to interlayer gaps.
The thickness representation is realized by managing the depth or-
der of polygons as a directed graph and adjusting the initial z coor-
dinates of polygons with reference to the graph. Our system auto-
matically rectifies the user inputs and integrates the shape structures
corresponding to the user-specified folding operations. The user
can create plausible 3D origami models quickly by specifying only
visible polygons in the flat state as well as the seven types of anno-
tations using simple mouse gestures. Although we focused on flat
origami having a front-and-back symmetry, our system can handle
most of the animal pieces in a traditional origami book [Yam95].
Our user study revealed that even novice users without the spe-
cialized knowledge and experience on origami and 3D modeling
can create plausible origami models within one or two minutes for
each.

For future work, our system can be extended in several ways.
Although we did not implement detection of self-intersections or
discrimination of physical realizability, these features will enhance
the usability of the system. Supporting additional folding opera-
tions and geometric structures is another direction. For example,
a variety of 3D origami pieces can be designed by supporting a
balloon-like 3D shape, which can be found in one of the most fa-
mous origami “crane”. If a reference image is available, automatic
recognition of input polygons would be quite beneficial to the user.
Supporting origami models having a cyclic depth order would also
be an interesting direction for future work.

References

[Aut] AUTODESK I.: Maya. https://www.autodesk.com/products/maya/
overview. 9

[Bat07] BATEMAN A.: Tess: origami tessellation software.
http://www.papermosaics.co.uk/software.html, 2007. 3

[BCV∗15] BESSMELTSEV M., CHANG W., VINING N., SHEFFER A.,
SINGH K.: Modeling character canvases from cartoon drawings. ACM
Trans. Graph. 34, 5 (2015), 162:1–162:16. 2

[EBC∗15] ENTEM E., BARTHE L., CANI M., CORDIER F., VAN DE
PANNE M.: Modeling 3D animals from a side-view sketch. Comput-
ers & Graphics 46 (2015), 221–230. 2

[EPB∗19] ENTEM E., PARAKKAT A., BARTHE L., MUTHUGANAPA-
THY R., CANI M.-P.: Automatic structuring of organic shapes from a
single drawing. Computers Graphics 81 (03 2019). 2

submitted to Pacific Graphics (2019)



12 Y. Kato & S. Tanaka & Y. Kanamori & J. Mitani / Single-View Modeling of Layered Origami

[FKMF07] FURUTA Y., KIMOTO H., MITANI J., FUKUI Y.: Computer
model and mouse interface for interactive virtual origami operation (in
japanese). IPSJ Journal 48, 12 (dec 2007), 3658–3669. 3, 10, 11

[GIZ09] GINGOLD Y. I., IGARASHI T., ZORIN D.: Structured annota-
tions for 2D-to-3D modeling. ACM Trans. Graph. 28, 5 (2009), 148:1–
148:9. 2

[GP94] GUEST S. D., PELLEGRINO S.: The Folding of Triangulated
Cylinders, Part I: Geometric Considerations. Journal of Applied Me-
chanics 61, 4 (1994), 773. 3

[IM10] IGARASHI T., MITANI J.: Apparent layer operations for the ma-
nipulation of deformable objects. ACM Trans. Graph. 29, 4 (2010),
110:1–110:7. 2

[IMKG09] IDA T., MARIN H., KASEM M., GHOURABI F.: Computa-
tional origami system eosin. Origami4 Fourth International Meeting of
Origami (2009), 285–293. 3

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.: Teddy: A sketch-
ing interface for 3D freeform design. In Proceedings of the 26th Annual
Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH 1999 (1999), pp. 409–416. 2

[KFC∗08] KILIAN M., FLÖRY S., CHEN Z., MITRA N. J., SHEFFER
A., POTTMANN H.: Curved folding. ACM Trans. Graph. 27, 3 (2008),
75:1–75:9. 3

[Lan11] LANG R. J.: Origami Design Secrets, 2nd edition. A.K Pe-
ters/CRC Press, 2011. 3

[MEKM17] MIYAMOTO E., ENDO Y., KANAMORI Y., MITANI J.:
Semi-automatic conversion of 3D shape into flat-foldable polygonal
model. Comput. Graph. Forum 36 (2017), 41–50. 3

[Mit05] MITANI J.: ORIPA: Origami Pattern Editor.
http://mitani.cs.tsukuba.ac.jp/oripa/, 2005. 3

[MYYT96] MIYAZAKI S., YASUDA T., YOKOI S., TORIWAKI J.: An
origami playing simulator in the virtual space. Journal of Visualization
and Computer Animation 7, 1 (1996), 25–42. 2, 3

[NISA07] NEALEN A., IGARASHI T., SORKINE O., ALEXA M.: Fiber-
Mesh: designing freeform surfaces with 3D curves. ACM Trans. Graph.
26, 3 (2007), 41. 2

[NPO13] NARAIN R., PFAFF T., O’BRIEN J. F.: Folding and crumpling
adaptive sheets. ACM Trans. Graph. 32, 4 (2013), 51:1–51:8. 2

[PDRK14] PACZKOWSKI P., DORSEY J., RUSHMEIER H. E., KIM
M. H.: Paper3D: bringing casual 3D modeling to a multi-touch inter-
face. In The 27th Annual ACM Symposium on User Interface Software
and Technology, UIST ’14 (2014), pp. 23–32. 2

[RSW∗07] ROSE K., SHEFFER A., WITHER J., CANI M., THIBERT
B.: Developable surfaces from arbitrary sketched boundaries. In Pro-
ceedings of the Fifth Eurographics Symposium on Geometry Processing
(2007), pp. 163–172. 2

[SRH∗15] SCHRECK C., ROHMER D., HAHMANN S., CANI M., JIN S.,
WANG C. C. L., BLOCH J.: Nonsmooth developable geometry for in-
teractively animating paper crumpling. ACM Trans. Graph. 35, 1 (2015),
10:1–10:18. 2

[Sta12] STACHEL H.: A flexible planar tessellation with a flexion tiling a
cylinder of revolution. Journal for Geometry and Graphics 16, 2 (2012),
153–170. 3

[TAC10] TACHI T.: Origamizing polyhedral surfaces. IEEE Transac-
tions on Visualization and Computer Graphics 16, 2 (2010), 298–311.
3

[TBWP16] TANG C., BO P., WALLNER J., POTTMANN H.: Interactive
design of developable surfaces. ACM Trans. Graph. 35, 2 (2016), 12:1–
12:12. 2

[Yam95] YAMAGUCHI M.: Japanese Origami Encyclopedia (in
Japanese). Natsumesha, 1995. 3, 9, 11

[YKD11] YVES KLETT I., DRECHSLER K.: Designing technical tessel-
lations. pp. 305–322. 3

submitted to Pacific Graphics (2019)


