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Abstract. We propose a novel design method for 3D origami consisting of tri-
angular facets with an axisymmetric structure. Our method interactively designs
a rotationally-symmetric crease pattern and then analytically calculates the 3D
origami with real-time human interaction. The proposed method enables us to
change one parameter to axisymmetrically deform the 3D origami while preserv-
ing its developability. By changing another parameter, our method leads to a way
of folding a 3D origami called “along-arc flat-folding”. By using our prototype
system, we interactively explore various origami designs before actually making
them. Several 3D origami pieces and folding sequences are presented to demon-
strate the validity.
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1. Introduction

Origami, the art of folding a piece of paper into a three-dimensional (3D) form, has re-
ceived much attention in geometry, mathematics, and engineering. In recent years, several
approaches for designing 3D origami have been proposed, and many creative origami pieces
have been generated. In this paper, we propose a novel 3D origami design method for a new
category of 3D origami consisting of triangular facets with an axisymmetric structure. Our
method interactively designs a rotationally-symmetric crease pattern (i.e., a set of creases on
a surface that defines the structure of an origami piece) and then analytically calculates the
3D origami with real-time human interaction.

Specifically, we first design the right part of the 1/N part (N = 8 for this example) of
the whole crease pattern (Figure 1a), where N indicates the order of rotational symmetry
(N > 2) and the angle θ is determined by N , i.e., θ = 180◦/N . After the 1/N part has been
specified, we generate the rotationally-symmetric crease pattern (Figure 1b) by repeating such
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Figure 1: Overview of our method.

part N − 1 times around the origin. Next, we calculate the 3D origami (Figure 1c) from the
crease pattern. Here, we first calculate the 1/N part of the 3D origami from its crease pattern
together with the user-specified angle ϕ between edge P0P1 and the z-axis. Note that Pi and
P ′i (with even indices) has a planar symmetry with respect to a plane through the z-axis and
Pi (with odd indices). Then, the axisymmetric structure of the 3D origami can be achieved
by iteratively rotating its 1/N part about the z-axis. Finally, based on the generated 3D
model, we determine the mountain and valley assignments on the crease pattern, which are
used to fold an origami piece (Figure 1d).

We analyze the effects of variations by changing two parameters. By changing the angle
ϕ and keeping the crease pattern fixed, we can axisymmetrically deform the 3D origami while
preserving its developability. This enables us to figure out a folding motion from the fold-
state to the flat-state of such a 3D origami (Section 5.1). By changing another parameter,
our method leads to a way of folding a 3D origami called “along-arc flat-folding” based on
the flat-foldability of each interior point verified by Kawasaki’s theorem [4] and Maekawa’s
theorem [3] (Section 5.2). By using our prototype system, we interactively explore various
origami designs before actually making them. Several 3D origami pieces and folding sequences
are presented.

2. Related work

In recent years, origami has advanced significantly both in quantity and complexity based on
the development of mathematical theories and more powerful computational resources [13, 2].

TreeMaker is software used to design flat-foldable origami [5]. This software generates the
crease pattern from a graph tree that represents the base structure of the object by using the
circle/river packing technique. Tess is a computer program that can make crease patterns
for origami tessellations that involve twist folds in a repeating pattern [1]. These approaches
focus on flat-foldable origami, but we are aiming at making 3D origami with a set of triangular
facets.

The Origamizer algorithm, created by Tachi [12], is a very general approach that can
generate a crease pattern for an arbitrary 3D triangular mesh model with topological disc
condition. The basic idea is to place clearances between each polygon of the unfolded pattern
and construct flaps from them. This method generates a crease pattern where the “tucks”
are placed in the empty spaces so that the target 3D shape can be made from a single sheet
of paper without requiring any cutting [10]. Origamizer can handle 3D rotational shapes; the
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appearance of the folded origami piece is equivalent to the target shape, but the generated
pattern might be overly complicated for a simple model.

Mitani proposed a method for designing 3D origami based on rotational sweep [6] that
generates a simpler crease pattern. Another of his methods [7] can generate 3D shapes that
have 3D tucks with a triangular cross section. Although the outer flags might be considered
obtrusive, his methods succeed in generating 3D curved origami from simple crease patterns.
His method [8], which combines the advantages of the rotational sweep and mirror reflection
approaches, has been used to build geometrically attractive origami pieces. Even though these
methods can handle the axisymmetric structure of origami, it is difficult for them to handle
the axisymmetric 3D origami consisting of triangular facets (Figures 1 and 10).

The interactive system is a creative and explorative tool for designers in computer-aided
design modeling and in 3D origami design. Tachi [11] proposed a design system where
the user can intuitively vary a Miura-ori pattern in 3D while preserving the developability
and other optional conditions inherent in the origami pattern. Another interactive system
proposed by Mitani and Igarashi [9] allows the user to design 3D curved origami surfaces by
using mirror operation with selecting and moving a vertex on the 3D origami while maintaining
the developability of the resulting shape. In our work, the system implementing our method
interactively designs a rotationally-symmetric crease pattern and then analytically calculates
the 3D origami with real-time human interaction.

3. Designing crease pattern

In this section, we describe a rotationally-symmetric crease pattern consisting of triangular
facets. Figure 2a shows a 1/N part of the crease pattern, and Figure 2b shows the shape in
3D space. The symbols in Figure 2 are as follows:

• Planes Π1 and Π2 are vertical planes whose intersecting lines with the horizontal plane
(i.e., the xy-plane) are lines l1 and l2, respectively.

• P0 is located at the origin in 3D space and expressed as p0, indicating the intersection
point of lines l1 and l2 on the horizontal plane.

• θ is the angle between lines l1 and l2, which equals 180◦/N , and expressed as Θ in 3D
space, indicating the angle between planes Π1 and Π2.

• P1 and P3 (with odd indices) lie on the plane Π1 and represent p1 and p3 along line l1
in the crease pattern, respectively.

• P2 and P4 (with even indices) lie on the plane Π2 and represent p2 and p4 along line l2
in the crease pattern, respectively.

• P ′2 and P ′4 (denoted as p′2 and p′4 in the crease pattern) are the symmetric points of P2

and P4 with respect to plane Π1, respectively.

Note that pi and p′i (with even indices) have a symmetry with respect to the line l1.

The rotationally-symmetric crease pattern can be interactively designed. Specifically, as
shown in Figure 2a, the θ in the crease pattern can be changed by N(N > 2). Point pi (i > 0)
can be added or deleted along lines l1 and l2. Furthermore, pi (i > 0) can be moved along
lines l1 or l2. After the right part is specified, the symmetric points with respect to line l1 are
calculated. Finally, as shown in Figure 2c, the whole crease pattern is generated by repeating
the 1/N part around the origin N − 1 times by 2θ. The mountain and valley assignments are
not determined until the 3D model is generated (Section 4.2).
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Figure 2: Designing rotationally-symmetric crease pattern consisting of triangular facets.

4. Calculation of each 3D point

In this section, we describe a method to calculate each point on the 3D origami based on
the crease pattern (using the example shown in Figure 1). P0 is located at the origin in 3D
space. Each 3D Pi (i > 0) is calculated sequentially in the order of its index. In Section 4.1,
we describe the calculation of P1 separately because a user-specified angle ϕ is needed. In
Section 4.2, the calculation of Pi (i > 1) is described. In Section 4.3, a special case during
calculation is given.

4.1. Calculation of P1

To calculate the 3D coordinates of P1, the following constraints should be satisfied:

1. The distance between P1 and P0 should be the same as the length of edge p1p0 in the
crease pattern.

2. P1 should lie on the plane Π1.

3. Angle ϕ (0◦ ≤ ϕ ≤ 180◦) between line P0P1 and the z-axis should be the same as the
user-specified value.

Figure 3 shows the process for calculating P1. Firstly, considering constraint 1), the
possible solutions for P1 in 3D space lie on the red sphere (Figure 3a) whose center is P0 and
radius equals the length of edge p1p0, which is measured from the crease pattern (Figure 1a).
Secondly, considering constraint 2), the possible solutions are shown as a red solution circle
(Figure 3b and c), which is the intersection between the red sphere and plane Π1. Finally,
by specifying the angle ϕ between line P0P1 and the z-axis, the 3D coordinates of P1 are
determined. Figure 3b and c show the solution of P1 with ϕ = 66◦ and ϕ = 140◦, respectively.
The angle ϕ is set to 66◦ and fixed throughout the subsequent calculation of the remaining
3D points.

4.2. Calculation of Pi (i > 1)

In the sequential calculation of Pi, the 3D coordinates of Pi−1 and Pi−2 are required. For
calculating Pi (i > 1), the following three constraints should be satisfied:
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Figure 3: Calculation of P1.

1. The distance between Pi and Pi−1 should be the same as the length of edge pipi−1 in
the crease pattern.

2. The distance between Pi and Pi−2 should be the same as the length of edge pipi−2 in
the crease pattern.

3. Pi should lie on the plane Π1 (for odd index) or Π2 (for even index).

For generating Pi (i = 2) (Figure 4), the 3D coordinates of P1 and P0 are required. In
Figures 4a and c, we first consider constraint 1) between Pi and Pi−1 (i.e., P2 and P1 in this
example). The possible solutions for P2 in 3D space lie on a sphere, called a solution sphere,
whose center is P1 and radius equals the length of edge p2p1. Then, by considering constraint
3), the solution circle shown in red is obtained from the previous solution sphere intersected
by plane Π2. Next, by considering constraint 2) between Pi and Pi−2 (i.e., P2 and P0) and
constraint 3), we obtain the solution circle shown in green on plane Π2 whose center is P0 and
radius equals the length of edge p2p0. Finally, the two intersection points between the two
solution circles (the red one and the green one) that satisfy all the constraints at the same
time are selected as two candidate solutions for Pi (i = 2). For the solution of P2 (with even
index), the symmetric point P ′2 with respect to plane Π1 is calculated. After the 1/N part of
the 3D origami is specified, the axisymmetric 3D origami is generated by iteratively rotating

Figure 4: Calculation of Pi (i = 2).
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Figure 5: Calculation of Pi (i = 3).

its 1/N part about the z-axis through 2Θ, as shown in Figures 4b and d, respectively.
The calculation process of Pi (i = 3), which lies on plane Π1, is shown in Figure 5. By

satisfying all the constraints, the two intersection points of the two solution circles on plane
Π1 are selected as candidate solutions for Pi (i = 3) (Figures 5a and c).

For designing various shapes of 3D origami, either candidate can be selected as the solution
of P3 (Figures 5b and d). However, one solution could flatten two connected facets (Figure 5d);
thus, the crease lines between such flattened facets are rendered in green.

We also show the calculation for Pi (i = 4), which lies on plane Π2, with the constraints
from P3 and P2 (Figure 6).

The shape (Figure 6b) is the 3D model introduced in Figure 1c. We then determine the
mountain and valley assignments on a 3D model and then translate them to the crease pattern
(Figure 1b) to fold the origami piece (Figure 1d).

Figure 6: Calculation of Pi (i = 4)

4.3. Special Case in Calculation of Pi (i > 1)

The candidate solutions for each Pi (i > 1) are two intersection points of the two solution
circles as described in Section 4.2. A special case occurs when the two solution circles are
identical. Then, the candidate solutions for Pi (i > 1) are not just two points but all the
points along the solution circle.

Figure 7 shows one example of the special case for calculating P3, where ϕ = 90◦ and line
P2P1 is vertical to plane Π1. In such a case, the solution circle shown in red is constructed
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Figure 7: Special case in calculation.

by points that satisfy constraints 1) and 3). The other solution circle shown in green is
constructed by the points that satisfy constraint 2) and 3). Both circles share the same center
P1 and have the same radius, which is the length of edge p3p1. As a result, the candidate
solutions for P3 in this case are not just two points but all the points along the solution circle.
In Figure 7, P3 can be selected arbitrarily on the solution circle to design various 3D origami.

5. Effects on geometry

In this section, we analyze the effects of variations by changing the parameters including angle
ϕ (Section 5.1) and angle Θ (Section 5.2).

5.1. Changing angle ϕ

The 3D origimi is a developable surface, which means that it is isometric to a planar shape,
i.e., the distance within the surface between any two points is equal to the distance between
the corresponding points in the plane. When angle ϕ is changed continuously, the shape
of our 3D origami is also changed continuously while retaining its developablility. We can
recalculate the shape efficiently due to the following reasons:

1. The change in angle ϕ only affects P1 directly.

2. Each subsequent Pi (i > 1) is to be recalculated sequentially, which means Pi is not
recalculated until the previous Pi−1 and Pi−2 have been recalculated.

3. Each Pi (i > 1) is recalculated based on Pi−1 and Pi−2, which have already been recal-
culated.

The user can explore various origami models by only changing angle ϕ. Figure 8 shows
some possible origami models. We set ϕ to 66◦ (Figure 8b) to obtain the shape we introduced
in Figure 1c. Figure 8d shows that the 3D origami can be completely unfolded just the same
as the 2D crease pattern. With angle ϕ set from 66◦ to 90◦, we can figure out a continuous
folding motion that shows the change from the fold-state to the unfold-state of such a 3D
origami. Although ϕ can theoretically be from 0◦ to 180◦, penetration between triangular
facets could happen at some values of ϕ (Figures 8a, f, and g). We leave it up to the user in
the designing process to avoid such illegal values of ϕ to generate real-world origami pieces.
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Figure 8: Various origami designs obtained by changing ϕ from 0◦ to 180◦: (a) ϕ = 0◦,
(b) ϕ = 66◦, (c) ϕ = 83◦, (d) ϕ = 90◦, (e) ϕ = 97◦, (f) ϕ = 135◦, (g) ϕ = 180◦.

Figure 9: Preparation for along-arc flat-folding.
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5.2. Changing angle Θ

Θ denotes the angle between planes Π1 and Π2 in 3D space, which equals 180◦/N . After the
1/N part of the origami model is calculated, the axisymmetric origami model is generated by
iteratively rotating its 1/N part about the z-axis N − 1 times through 2Θ.

In this section, we decrease Θ, expressed as Θ′, from 180◦/N to 0◦. By inserting an extra
boundary line in the crease pattern, we keep the property of developablility of the 3D model
during the decreasing of angle Θ′. Then, we verify the flat-foldability of each interior point
on the crease pattern by Kawasaki’s theorem [4] and Maekawa’s theorem [3], leading to a way
of folding called “along-arc flat-folding”.

Specifically, first we decrease Θ to Θ′ and then use Θ′ to generate the 1/N part of the
origami model. Note that such a 1/N part still maintains a developable surface as each 3D
edge is equivalent to the corresponding edge on the flat plane (crease pattern).

Then, we iteratively rotate the 1/N part about the z-axis N − 1 times through 2Θ′ to
generate the whole origami model (Figure 9a). Note that the last 1/N part is separated from
the first 1/N part, which breaks the developable property of the 3D model. In this situation,
we insert a boundary line in the crease pattern (Figure 9b) to maintain the developable
property of the whole 3D model.

The process of decreasing angle Θ′ makes Pi (with even indices) on plane Π2 together
with the symmetric P ′i fall towards plane Π1. For the whole 3D model, such a process
compresses the 3D origami towards plane Π1. Here, we check the flat-foldability of the
3D origami by verifying the flat-foldability of each interior point using Kawasaki’s theorem
and Maekawa’s theorem. Kawasaki’s theorem gives a criterion for an origami construction
to be flat, which states that a given crease pattern can be folded to a flat origami iff all
the sequences of angles α1, α2, . . . , α2n surrounding each interior vertex fulfill the following
condition: α1 + α3 + · · · + α2n−1 = α2 + α4 + · · · + α2n = 180◦. Maekawa’s theorem is
another criterion, which states that the numbers of mountains and valleys always differ by 2 .
Kawasaki’s theorem and Maekawa’s theorem are two local flat-foldable conditions.

In Figure 9c, without loss of generality, we verify the flat-foldability of the interior points
by showing the details of the crease pattern around P1 and P4, which lie on the planes Π1

and Π2, respectively. Angle αi,k denotes the k−th incident sector angle of pi. For P1, since
α1,1 = α1,2 and α1,3 = α1,4 and thus α1,1 +α1,3 = α1,2 +α1,4 = 180◦, which satisfies Kawasaki’s
theorem. Also, since the number of mountain lines (3) minus the number of valley lines (1)
equals 2, Maekawa’s theorem is satisfied. Similarly, for P4, since α4,1 = α4,2, α4,3 = α4,6 and
α4,4 = α4,5, and thus α4,1 + α4,3 + α4,5 = α4,2 + α4,4 + α4,6 = 180◦, which satisfies Kawasaki’s
theorem. Also, since the number of mountain lines (4) minus the number of valley lines (2)
equals 2, Maekawa’s theorem is satisfied. If all interior points satisfy Kawasaki’s theorem and
Maekawa’s theorem, we can decrease Θ′ to 0◦ to fold the whole 3D model around the z-axis
(Figure 13b), which is a way of folding called “along-arc flat-folding”.

6. Results

We show several resulting origami pieces in Figure 10 and Figure 12, where the first column is
the crease pattern, the second column is the 3D model, and the third column is the photo of
the origami piece. Figure 10 shows the 3D origami pieces constructed with triangular facets.
In Figure 11, we show the folding motion of the origami (Figure 10) from the fold-state to
the flat-state by changing parameter ϕ.

By applying the special case, we design origami pieces that have both a flat center area
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Figure 10: Resulting origami pieces with triangular facets.

Figure 11: Flat-folding motion.

and triangular facets, as shown in Figure 12. Figure 13 shows the “along-arc flat-folding” of
the 3D origami shown in Figures 10b and c. The photo of the real origami pieces and the
folded shapes are shown in Figure 14.

7. Conclusion

We have described a design method for a new category of 3D origami consisting of triangular
facets with an axisymmetric structure. We focused on the axisymmetric property to introduce
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Figure 12: Resulting origami pieces with flat center area and triangular facets.

Figure 13: Along-arc flat-folding sequences.

a rotationally-symmetric crease pattern and then described the details of the calculation of
each point on the 3D origami. For the calculation of Pi (i > 1), the two intersection points
of the solution circles were selected as solution candidates. Each of them was used to create
different 3D models. During the calculation, we found a special case where the two solution
circles are identical; thus, the candidate solutions are not two points but all the points on

Figure 14: Along-arc flat-folding of real origami pieces.
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the solution circle. We have applied the special case in designing origami pieces with a flat
center.

We analyzed the effects of variations by changing two parameters: angle ϕ and Θ. First,
we changed ϕ, which is the angle between the edge P0P1 and the z-axis. The benefit of the
process of generating the 3D origami is, for each updated ϕ, the updated model remains
developability. This enables us to explore various origami designs and figure out a folding
motion from the fold-state to the flat-state of such a 3D origami. Next, we introduced a
way of folding called “along-arc flat-folding” by changing the value of Θ, which is the angle
between planes Π1 and Π2, from 180◦/N to 0◦. To keep consistency between the crease
pattern and the 3D model during the process of decreasing Θ, we inserted a boundary line
in the crease pattern. Then, we checked the flat-foldability of the 3D origami by verifying
the flat-foldability of each interior point using Kawasaki’s theorem and Maekawa’s theorem.
We showed the “along-arc flat-folding” sequences and practiced such folding in real origami
pieces. One future work is to use tuck folding technology to design axisymmetric 3D origami
consisting of triangular facets.
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