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Diversifying Detail and Appearance
in Sketch-Based Face Image Synthesis
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Fig. 1: Our method can generate diverse, photorealistic images from a single portrait sketch (top row). We can

also controll the detail and appearance separately (bottom row).

Abstract Sketch-based face image synthesis has gained

greater attention with the increasing realism of its out-

put images. However, existing studies have overlooked

the significance of output diversity : because sketches

are inherently ambiguous, it would be desirable to have
various output candidates for a single input sketch.

In this paper, we explore synthesis of diverse face im-

ages from a single sketch by using a three-stage frame-

work consisting of sketch refinement, detail enhance-

ment, and appearance synthesis. Each stage uses super-
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vised learning with neural networks. With this three-

stage framework, we can separately control the detail

(e.g., wrinkles and hair structures) and appearance (e.g.,

skin and hair colors) of output face images separately

by using multiple latent codes. Quantitative and quan-
titative evaluations demonstrate that our method offers

greater diversity in its output images than the state-of-

the-art methods, while retaining the output realism.

Keywords Sketch-based image synthesis · Deep

learning · GAN · Multimodal

1 Introduction

Sketching of human faces is an intuitive way to de-

pict facial characteristics with rough strokes: it is done

not only as a hobby but also in criminal investiga-

tion [31], for example. Digital sketching has become

common with the availability of off-the-shelf devices
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such as pen tablets and touch screens, which ignited

active research on sketch-based image synthesis over
the last decade [4]. Human faces have been a main sub-

ject of sketch-based image synthesis because of their

ubiquity, and the recent deep learning techniques can

“magically” transform even poor face sketches into pho-

torealistic face images [34].

However, in the quest for realistic output face im-

ages, existing studies have overlooked an essential as-

pect of sketch inputs: because sketches are inherently

ambiguous, there are many possibilities for the appear-

ance of photorealistic outputs. For example, from the

portrait sketches shown in Fig. 1, it is difficult to rec-

ognize what the skin and hair colors are and how many

wrinkles are on the faces. Such output diversity is essen-

tial for artists to foster their creativity in sketch-based

image synthesis. Nevertheless, most existing methods

can obtain only a unimodal output from a single sketch.

In this paper, we propose a method for generating

face images from hand-drawn portrait sketches while

taking both realism and diversity into account. We achieve

multimodal sketch-to-face translation by using a three-

stage framework consisting of sketch refinement, de-

tail enhancement, and appearance synthesis. Each stage

uses supervised learning with neural networks. For the

first stage, we adopt the sketch refinement network used

in Deep Plastic Surgery (DPS) [34], which translates an

input hand-drawn sketch into a sparse edge map that

forms a facial outline. The second stage translates the

sparse edge map into a dense edge map, and the third

stage synthesizes a colorized image as the final output

from the dense edge map.

Our key idea is to integrate controllability of de-
tail (e.g., wrinkles and hair structures) and appearance

(e.g., skin and hair colors) to diversify output face im-

ages separately in terms of each aspect. The controlla-

bility of detail and appearance is achieved in the sec-

ond and third stages, respectively, by injecting latent

codes sampled from a prior into multi-scale adaptive in-

stance normalization (AdaIN) [9] layers. During train-

ing, the second and third stages learn the respective

latent spaces for detail and appearance via a Wasser-

stein auto-encoder (WAE) [27], which achieves higher-

quality multimodal outputs than common approaches

with a variational auto-encoder (VAE) [13]. Note that

the ground-truth (GT) dense maps are crucial for the

supervised learning in the second stage; accordingly, we

selected an edge detector [3] for photographs through a

comparative experiment.

As demonstrated in Fig. 1, our method can gener-

ate a variety of face images from a single sketch while

controlling the detail and appearance separately. Both

qualitative and quantitative evaluations demonstrate

that our method can generate diverse images while main-

taining realism comparable to that of state-of-the-art
methods for sketch-based image synthesis.

2 Related Work

2.1 Image-to-image (I2I) translation

Various I2I translation methods using deep learning

have been proposed to translate images from a source

domain to a target domain. The seminal work is pix2pix [10],

a supervised framework that can translate various types

of images (e.g., semantic masks and edge maps) into

photographs and vice versa. That method achieved pho-

torealistic image synthesis by using a conditional gener-

ative adversarial network (GAN) [22]. pix2pix inspired

various follow-up studies on applications such as high-

resolution images [30,12] and unsupervised learning [38,

18,19,6].

General I2I translation frameworks [10,30,12,23,24]

have been applied to sketch-based image synthesis via

training with edge maps because they can easily be

generated from photographs. However, edge-map-based

approaches yield poor generalizability with respect to

hand-drawn sketches because of the large domain gap.

2.2 Sketch-based image synthesis

Training data can be a bottleneck in sketch-based im-

age synthesis. Several sketch datasets are publicly avail-

able [25,36], but the quality and amount of data are

not sufficient to obtain good generalizability. To com-

pensate for the lack of data, Chen et al. used synthetic

sketches augmented by edge maps to train a GAN that

could handle various image classes [5]; however, that

approach had insufficient generalizability and limited

output realism. The output quality would be improved

with more sketch data for training, but collecting such

data is quite costly.

Instead of collecting more sketch data, several ap-

proaches have attempted to close the domain gap be-

tween edge maps and hand-drawn sketches. The contex-

tual GAN [21] learns a joint distribution of edge maps

and photos from jointly-paired sketch-photo images and

retrieves the paired image whose sketch portion is the

closest to the input sketch in the latent space. Later,

that approach was specialized for face images [3]. Yang

et al. proposed DPS [34], a sketch-based framework for

face image editing with controllable sketch fidelity. Dur-

ing training, DPS first generates pseudo-sketches by

deforming and dilating edge maps and then trains a

refinement network that converts the pseudo-sketches
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Fig. 2: Overview of our method’s inference phase. G is the network to refine a rough input sketch [34]. H and F

are networks to diversify the sketch’s detail and appearance, respectively, with separate controllability via latent

codes zH and zF .

Table 1: Summary of the notations. Some notations

might accompany subscripts “gt” and “real,” which

refer to ground-truth images and real samples from a

normal distribution, respectively.

Notation Description

Sin Input sketch
SG Refined sketch
SH Dense edge map
Iout Output Image

G Sketch refinement network
H Detail network
DH Detail discriminator
F Appearance network
EW Encoder of WAE
ED Discriminator of WAE

zH Latent code for detail control
zF Latent code for appearance control

Lrec L1 loss
Lperc Perceptual loss
LG, LD Adversarial losses
LFM Feature-matching loss
LGW , LDW Adversarial losses for WAE

to the original edge maps. During inference, the refine-

ment network transforms hand-drawn sketches to facial

outlines, and DPS then obtains photorealistic outputs

from the refined sketches by using the edge-to-photo

translation model. Users can also specify the refinement

degree for sketches. Li et al. [17] adopted a similar idea

to DPS’s pseudo-sketches for face image synthesis from

freehand sketches. Their method differs from DPS in

that they used an attention mechanism to control the

refinement degree according to facial parts. Although

those studies improved the realism of synthetic images,

they did not consider output diversity sufficiently. In

contrast, our method accounts for both realism and di-

versity in sketch-based image synthesis.

2.3 GAN output diversification

Diversification of images generated by GANs is a chal-

lenging problem in general I2I translation. For example,

pix2pix [10] often suffers from mode collapse, in which

we can obtain only a single plausible result even if we in-

ject an additional noise input into the network. To solve

this problem, Ghosh et al. achieved multimodal image

synthesis by using multiple generators that have differ-

ent modes [8]. Whereas that method can generate only

a fixed number of images from a single input image, a

VAE-GAN [14], which uses a variational auto-encoder

(VAE) [13] together with a GAN, can generate a vary-

ing number of outputs. Moreover, a BicycleGAN [39]

is a more sophisticated network that consists of a con-

ditional version of a VAE-GAN and a latent regressor

GAN. In addition to those general approaches, multi-

modal image synthesis has been tackled in specific tasks

such as semantic image synthesis [23,16,20,7], in which

the inputs are semantic masks.

Multimodal image synthesis has also been used for

sketch inputs. The methods by Lee et al. [15] and Chen

et al. [2] enable users to specify appearance according

to a reference image. Yang et al. proposed a method for

controlling output face images by specifying attributes

(e.g., a facial expression, beard, etc.) [35]. Those meth-

ods can semantically manipulate the output image, but

its diversity is limited to the range of given reference

images or specific attributes. In contrast, our method

allows users to control not only appearance but also

detail in the latent space and to sample an unlimited

number of candidates from a single sketch.

Tseng et al. [28] proposed a method that can diver-

sify multiple factors similar to appearance and detail

by learning a step-by-step generation process, in which

it first generates flat color images from sketches and
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then adds edges to them. However, that method is not

designed for hand-drawn sketch inputs, and its gener-
alizability is limited. Even if input rough sketches were

refined by a sketch refinement network [34] as in our

method, their method would not obtain plausible re-

sults (see Section 4.3 for a comparison).

Very recently, Wang et al. [29] proposed a method

that fine-tunes a pre-trained generator so that object

shapes in the output images match a few sketch exem-

plars specified by the user. Their method yields pho-

torealistic, diverse images. Given a single sketch input,

however, their method is quite slow because it requires

tens of thousands of iterations of backpropagation. In

contrast, our feed-forward approach offers instant feed-

back.

3 Method

Our goal is to generate diverse face images from sketches

by controlling detail and appearance separately. Fig. 2

shows an overview of our method’s inference phase, and

Table 1 summarizes the notations used in this paper.

First, a sketch refinement network G converts a hand-

drawn sketch input Sin to a refined sketch SG. Next, a

detail network H converts SG to a dense edge map SH .

Finally, an appearance network F generates an output

face image Iout from SH . We control the output images

of networks H and F by using latent codes zH, zF ∈ Rn,

where n is the number of dimensions. While zH and

zF are randomly sampled from a normal distribution

N (0, I) in the inference phase, they are encoded by a

WAE during training. We train each network separately

in a supervised manner for stable training. We describe

the network architectures in Section 3.1 and the train-

ing procedure in Section 3.2.

3.1 Network architectures

In this section, we first describe the overall network

architectures and then discuss the design choices for

specific operations used in the networks. The sketch re-

finement network G, we adopt the encoder-decoder ar-

chitecture used in DPS [34]. The networks H and F use

the same encoder-decoder architecture; here we elabo-

rate the case of the detail networkH, as shown in Fig. 3.

The encoder contains reflection padding and 3× 3 con-

volution in the first two layers. These are followed by six

Encoder’s Modulation Blocks. As shown in the upper-

right blue box in Fig. 3, each of these blocks consists of

leaky ReLU activation, reflection padding, 3× 3 convo-

lution, and AdaIN [9]. Meanwhile, the decoder consists

of six Decoder’s Modulation Blocks (upper-right pink

box in Fig. 3), each of which consists of ReLU activa-

tion, upsampling, reflection padding, 3×3 convolution,
and AdaIN. In the last three layers, it also contains re-

flection padding, 3×3 convolution, and hyperbolic tan-

gent. The network DH is a discriminator that has the

same architecture as DPS and discriminates between

the output dense edge map SH and GT SH
gt . Finaly,

the networks EW and DW are the respective encoder

and discriminator of WAE [27]. We use the resnet 128

architecture [39] for EW and an architecture consisting

of two linear layers for DW .

Learning of detail and appearance latent spaces. As ex-

plained in Section 2.3, many existing techniques for

multimodal image synthesis [14,23,7] have adopted a

VAE [13] to diversify their output images. However,

a VAE tends to generate blurry images, because its

training enforces reconstraction of the same image from

different latent codes that are sampled via the repa-

rameterization trick. To solve this problem, we adopt a

WAE [27], which makes the latent space’s distribution

match the prior via GAN-based learning. As shown in

the upper left of Fig. 3, we encode the GT dense edge

map SH
gt into the latent code zH via the encoder EW .

Then, by using the discriminator DW , we compute the

loss between zH and zHreal, which is sampled from the

prior distribution. Lastly, we inject the encoded latent

codes zH into network H and reconstruct SH
gt as SH .

In our framework, the WAE learns latent spaces for

details and appearance that match prior distributions

and yield diverse outputs, with separate controllability

of each factor.

Injection of detail and appearance information. To in-

ject “style” information into image generation networks,

AdaIN [9] is a popular choice in various techniques.

AdaIN applies scaling and shifting to input feature maps

after instance normalization:

AdaIN(x, y) = σ(y)

(
x− µ(x)

σ(x)

)
+ µ(y), (1)

where µ(·) and σ(·) denote functions that compute the

mean and standard deviation across the spatial loca-

tions of the feature maps x and y.

We use AdaIN to inject detail information into the

detail network H by using the latent code zH as input

(and similarly for the appearance network F with zF ).

As shown in the upper-right boxes in Fig. 3, the two

linear layers project zH to scaling and shifting values

that correspond to σ(y) and µ(y) in Equation (1). To

reflect detail information over multiple scales, we apply

AdaIN repeatedly via the six modulation blocks in the

encoder and the decoder.
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Fig. 3: Our network architecture and a training overview for network H (the same as network F except for

LFM ). The details of the Encoder’s/Decoder’s Modulation Blocks are illustrated in the upper-right boxes.

3.2 Training

We use a pre-trained network for G and separately train

the networks H and F in a supervised manner. The

sketch refinement network G is trained to translate syn-

thetic sketches (i.e., deformed, discarded, and dilated

edge maps) into original edge maps [34]. The detail net-

work H learns translation from a sparse edge map Sin

to a dense edge map SG
gt. Meanwhile, the appearance

network F learns translation from a dense edge map

SH
gt to a face photograph Igt.

To prepare the GT sparse edge maps, we use holis-

tically nested edge detection (HED) [33], because net-

work G is also trained using HED-based edge maps.

To prepare the GT dense edge maps, we adopt the ap-

proach in DeepFaceDrawing (DFD) [2,3], among sev-

eral candidates, because it can extract visually plau-

sible detail edges like wrinkles and hair structures, as

demonstrated in our experiments (Section 4.4).

Loss function. To train the detail network H, we use

the following loss function:

L = LDPS + λFMLFM + λGWLGW + λDWLDW , (2)

where λFM , λGW , and λDW are weight coefficients. We

also use L to train the appearance network F , but with-

out LFM , because it does not change the results. We

explain each term as follows. First, LDPS captures the

loss for the edge-to-photo network in DPS [34]:

LDPS = λrec Lrec + λperc Lperc + λG LG + λD LD, (3)

where λrec, λperc, λG, and λD are weight coefficients.

Here, Lrec is the L1 loss between the GT images and

the network outputs:

Lrec = E
[∥∥SH − SH

gt

∥∥
1

]
. (4)

Lperc is a perceptual loss [11] that evaluates the seman-

tic similarity between images:

Lperc = E

[∑
i

λi

∥∥Φi(S
H)− Φi(S

H
gt)

∥∥2
2

]
, (5)

where Φi(x) is the feature map of x in the i-th layer of

VGG19 [26], and λi is the weight at each layer. Lastly,

LG and LD are the adversarial losses with the hinge

loss:

LG = −E
[
DH(SH)

]
, (6)

LD = E
[
ReLU(τ +DH(SH))

]
+E

[
ReLU(τ −DH(SH

gt))
]
, (7)

where τ is a constant. In addition to LDPS , we intro-

duce two more loss functions in our framework. First,

we use the feature-matching loss [14] between edge maps:

LFM = E

∑
j

∥∥∥D(j)
H (SH)−D

(j)
H (SH

gt)
∥∥∥
1

 , (8)

where D
(j)
H (x) is the feature map of x in the j-th layer

of the discriminator DH . This loss function can reduce
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the occurrence of artifacts in the output of network H.

Finally, we introduce the adversarial losses for WAE:

LGW = −E
[
DW (EW (SH

gt))
]
, (9)

LDW = −(E
[
DW (zHreal)

]
− E

[
DW (EW (SH

gt))
]
), (10)

where zHreal ∈ Rn is a vector sampled randomly from a

normal distribution N (0, I).

4 Experiments

4.1 Datasets

To train our framework, we used 28,000 images in the

CelebAMask-HQ dataset [12,40]. We extracted sparse

and dense edge maps from the face images in the dataset

by using the HED [33] and DFD [2,3] approaches. We

resized all images to 256 × 256 pixels. The test inputs,

for our qualitative and quantitative evaluation were 30

hand-drawn sketches provided as part of DPS [34].

4.2 Implementation details

We used the Python language and the PyTorch library

to implement our method. The networks were trained

on a PC equipped with an NVIDIA RTX A4000. The

training time for both networks H and F was about 13

hours for training of 20 epochs with 28,000 images. The

test time was 0.07 seconds to obtain one output image

from a single hand-drawn sketch via the trained model.

For optimization, we used Adam with the momen-

tum term β = (0.5, 0.999) and set the learning rates to

0.0002. We set the batch size to 4. In all experiments,

we set the weights λrec, λperc, λG, λD, λFM , λGW , and
λDW to 100, 1, 1, 1, 10, 10000, and 1, respectively.

For the perceptual loss Lperc, we used the first layer of

conv2 and the first layer of conv3 of VGG19 [26], which

were weighted by 1 and 0.5, respectively. For the hinge

loss, constant τ was set to 10. The number of dimen-

sions, n, of the latent codes was set to 8. For network G,

we fixed the sketch refinement parameter [34] as l = 1

(i.e., full refinement) in our experiments, because the

test input sketches were quite coarse and smaller l val-

ues yielded poor results.

Please watch the accompanying video for our

interactive demo.

4.3 Comparison with existing methods

We compared our method with SPADE [23], ArtEdit-

ing [28], and DPS [34]. Because DPS only supports uni-

modal results, we compared both unimodal and mul-

timodal results. Unimodal results of the multimodal
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Fig. 4: Qualitative comparison of results from

SPADE [23], ArtEditing [28], DPS [34], and our

method. The designation “+G” indicates that the

sketch inputs of SPADE and ArtEditing were refined

by network G [34]. From the (a) unimodal results

(generated from zero vectors for the multimodal

methods) and (b) multimodal results (generated from

random vectors), we can see that our method

outperformed the existing methods in terms of

diversity while retaining realism comparable to that of

the state-of-the-art method.

methods (including ours) were obtained by feeding the

mean vector of the prior distribution (i.e., a zero vector)

as a latent code. The multimodal results were generated

from randomly sampled latent codes. Because SPADE

and ArtEditing were trained with edge maps and thus

could not handle rough hand-drawn sketches, we also

applied G to the inputs of those methods: we denote the

resulting methods as SPADE+G and ArtEditing+G.

Fig. 4 shows a qualitative comparison. As can be

seen in the results, although SPADE+G could gener-

ate relatively plausible images, they looked a little too

smooth, and the multimodal results had relatively small

variations. Meanwhile, ArtEditing+G could not obtain

realistic results because of its limited generalizability

to hand-drawn sketches. DPS [34] tended to produce

blurry images and was limited to unimodal outputs.

In contrast, our method generated clearer images with

richer variations (e.g., laugh lines and skin colors) be-

cause of the diversified detail and appearance in our

framework. Appendix A shows additional qualitative
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Sin ,S
G (a) Canny (b) XDoG (c) DFD

Fig. 5: Comparison of edge detectors for a dense edge map SH and the corresponding final output Iout. The (a)

Canny and (b) XDoG [32] edge maps could not represent detail appropriately, and their final outputs were not

realistic. Meanwhile, the DFD [2,3] edge map could depict detail such as hair structures, which is reflected in the

final output.

Table 2: Quantitative results for diversity (based on

LPIPS) and realism (via a user study). For

multimodal outputs, 12 subjects evaluated results

generated from zero vectors (scores outside

parentheses) and from random vectors (inside

parentheses). The caption of Fig. 4 indicates the

compared methods.

Diversity ↑ Realism ↑
SPADE+G 0.265 2.20 (2.29)
ArtEditing+G 0.350 1.13 (1.07)
DPS n/a 3.40 (n/a)
Ours 0.373 3.40 (2.74)

comparisons, which also included a BicycleGAN [39]

and pix2pixHD [30].

We also conducted experiments for quantitative eval-

uation of diversity and realism. For diversity, we cal-

culated an evaluation metric by using LPIPS [37] as

follows. For each input sketch, we generated 10 multi-

modal outputs and averaged the LPIPS value for each

pair among all their combinations. We applied this pro-

cess to 30 input sketches and averaged the resultant val-

ues to obtain the diversity score, where a higher score

indicates greater diversity. For realism, we conducted a

user study. We also considered numerical metrics such

as FID and SSIM, but we could not use them because

GT photographs corresponding to the test sketches were

not available to compute those metrics. In the user

study, we asked 12 subjects to score the results of each

method in a range of 1 to 5 (with 1 and 5 indicating the

least and most realistic results, respectively). We aver-

aged the scores given by all the subjects to obtain the

realism score. Note that the evaluation scores for the

multimodal methods could differ depending on the la-

tent codes sampled from the prior. For fair comparison,

we showed the subjects two types of results: one gen-

erated with a zero vector, and the other with random

latent codes.

(a) Without H

(b) With H

Fig. 6: Comparison of images (a) without and (b)

with the detail network H. Whereas the results

without H were blurry, those with H were clearer and

more diverse.

Table 2 summarizes the quantitative comparison of

the diversity and realism scores. The realism scores out-

side or inside parentheses represent those that were

obtained from a zero vector or random latent codes,

respectively. First, the diversity score (LPIPS) of our

method was the highest among all the methods, which

indicates that it yielded the most diverse images from

the sketches. The realism scores showed that our method

was on par with DPS [34] in the unimodal setting. As

for the multimodal setting, our method achieved the

highest realism score (i.e., the value in parentheses)

among all the multimodal methods. In summary, our

method yielded more diversity than the existing multi-

modal methods while maintaining high realism compa-

rable to that of DPS.

4.4 Ablation study

We also conducted ablation studies to validate our de-

sign choices regarding the detail network H, GT dense

edge maps, WAE, and feature-matching loss.
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(b) WAE

(a) VAE

Sin SG

Fig. 7: Comparison of images generated using (a) a

VAE or (b) a WAE, showing the dense edge map SH

(top rows) and the final output Iout (bottom rows).

The images generated with the WAE had more diverse

detail (e.g., wrinkles) in SH and appearance (e.g., skin

color) in Iout than those generated with the VAE.

Validation of detail network H. Fig. 6 shows results

generated with and without network H. In the model

without H, network F was trained to transform an

HED edge map SG
gt to a GT photograph Igt directly,

without generating a dense edge map. The compari-

son revealed that the diversity of the model without

H deteriorated in terms of both detail and appearance

(particularly in the hair regions), because the diversity

of both factors was controlled with only a single latent

code. Even worse, the model without H lost the sepa-

rate controllability of detail and appearance.

(a) Without FM loss

(b) With FM loss

Fig. 8: Comparison of refined dense edge maps

obtained (a) without and (b) with the

feature-matching (FM) loss. The FM loss was useful

to reduce grid-like artifacts like those in (a).

Validation of GT dense edge maps. To generate GT

dense edge maps for training the detail network H, we

evaluated three edge detectors: the Canny edge detec-

tor [1], the XDoG [32] operator, and DFD [2,3]. Fig. 5

shows that the edges detected by the Canny and XDoG

techniques were denser than the input sketch, but they

did not depicted hair structures (i.e., detail) appropri-

ately. Consequently, the corresponding face outputs lost

realism. In contrast, we can see that the DFD edge

maps depict the detail well, and the final output was

visually plausible while capturing hair structures, for

example.

Validation of WAE. We compared two network vari-

ants with a WAE [27] and a VAE [13]. Fig. 7 shows

that the WAE obtained more diverse and clearer results

in terms of detail and appearance than the VAE. For

example, the WAE could capture various skin and hair

colors and high-frequency components such as beards

and wrinkles, whereas the VAE could not handle them

appropriately because of its drawback described in Sec-

tion 3.1. Accordingly, the WAE is more suitable than

the VAE for our framework.

Validation of feature matching loss. Fig. 8 shows results

obtained with and without using the feature-matching

(FM) loss in training network H. Without the FM loss,

the network could not learn edge features well, which

caused grid-like artifacts in the refined dense edge maps.

In contrast, by using the FM loss, we could reproduce

plausible hair structures and wrinkles without notice-

able artifacts by having the network learn to match the

discriminator features of the generated dense edge maps

and GT dense edge maps.
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(a) Detail transfer

(b) Style transfer

Input image Reference image Output image

Input image Reference image Output image

Fig. 9: Application of our method to transfer (a)

detail and (b) appearance from a reference image.

4.5 Application

As shown in Fig. 9, our method can also transfer detail

or appearance from a reference image to a target image,

as follows. First, we extract a sparse edge map from an

input image by using the HED algorithm. Next, we feed

the extracted edge map to our model without network

G. Instead of randomly sampling a latent code from the

prior, we extract a latent code from the reference image

by using the encoder EW . By injecting the encoded

latent code into networks H and F , we can transfer the

hair structures and skin and hair colors in the reference

image to the target image.

5 Conclusions

In this paper, we have proposed a three-stage frame-

work that can generate diverse face images from a sin-

gle hand-drawn sketch. After refining a rough sketch

input by using a sketch refinement network [34], our

framework diversifies the detail (e.g., wrinkles and hair

structures) and appearance (e.g., skin and hair colors)

of the output face images with separate controllability

of each factor. The controllability stems from injection

of latent codes into encoder-decoder networks via our

AdaIN modulation blocks. The latent space for each

factor is learned via a WAE instead of a VAE, unlike

common techniques for multimodal image synthesis. We

validated our method through qualitative and quantita-

tive comparisons with state-of-the-art methods. Specif-

(a) (b) (c)

Fig. 10: Failure cases in the proposed framework,

showing (a) the input sketch at the top and the

refined sparse edge map at the bottom, and (b, c) the

corresponding refined dense edge maps (top) and final

outputs (bottom). With inappropriate combinations of

random latent codes, our method sometimes (b) adds

unnecessary edges in the background or (c) colorizes

hair regions unnaturally.

ically, our method generated more diverse and photo-

realistic images, as it achieved the best diversity and

realism scores based on LPIPS and a user study. We

also conducted ablation studies and validated the effec-

tiveness of the detail network H, GT dense edge maps,

WAE, and FM loss used in our framework.

Limitations and future work. Our method has the fol-

lowing limitations, which we plan to address in our

future work. First, as shown in Fig. 10(b), the detail

network H sometimes adds unnecessary edges in the

background. We may be able to solve this problem by

feeding a background mask into the network to restrict

the area for refinement. Second, as shown in Fig. 10(c),

certain inappropriate combinations of the latent codes

for detail and appearance caused unnatural colors and

degraded the output realism. We attribute this defect

to the separate training procedures for our networks,

which cause error accumulation in step-by-step infer-

ence. While we adopted this approach to stabilize the

training, we plan to develop a framework for stable end-

to-end training of the whole network.
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A Additional Qualitative Comparisons

Figs. 11 and 12 show additional qualitative comparisons for 30
test input sketches that were also used in our user study. The
compared methods were a BicycleGAN [39], pix2pixHD [30],
SPADE [23] with the sketch refinement network G [34], ArtE-
diting [28] with G, and DPS [34]. The results obtained by the
compared methods often had blurry, unnatural faces, whereas
our results were plausible and diverse.
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Input BicycleGAN pix2pixHD DPSArtEditing+GSPADE+G OursSPADE+G
(random)

ArtEditing+G
(random)

Ours
(random)

Fig. 11: Additional qualitative comparison. From left to right: the input sketches, and the results obtained by

BicycleGAN [39], pix2pixHD [30], SPADE [23] with the sketch refinement network G [34], ArtEditing [28] with

G, DPS [34], and our method.
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Fig. 12: Additional qualitative comparison obtained with the same settings as in Fig. 11 but on 15 different

sketch inputs.


