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Figure 1: Our method infers the materials (roughness, diffuse albedo, and specular) and geometry (depth and normal) from an input human

image and calculates all-frequency shadows and reflections under new lighting conditions. As a lighting representation, we adopt a fixed

number of area lights that approximate the target environment map.

Abstract

Relighting of human images enables post-photography editing of lighting effects in portraits. The current mainstream approach

uses neural networks to approximate lighting effects without explicitly accounting for the principle of physical shading. As a

result, it often has difficulty representing high-frequency shadows and shading. In this paper, we propose a two-stage relighting

method that can reproduce physically-based shadows and shading from low to high frequencies. The key idea is to approximate

an environment light source with a set of a fixed number of area light sources. The first stage employs supervised inverse

rendering from a single image using neural networks and calculates physically-based shading. The second stage then calculates

shadow for each area light and sums up to render the final image. We propose to make soft shadow mapping differentiable for

the area-light approximation of environment lighting. We demonstrate that our method can plausibly reproduce all-frequency

shadows and shading caused by environment illumination, which have been difficult to reproduce using existing methods.

CCS Concepts

• Computing methodologies → Image manipulation; Rendering;

1. Introduction

Human image relighting can alter the lighting effects in a portrait
by changing the lighting condition after the photo shoot. The fun-
damental procedure for human image relighting is to infer the in-

trinsic geometry and reflectance of the target person as well as the
scene illumination from the input image via inverse rendering and
then render an output image with a new lighting condition. Modern
learning-based methods formulate these inverse and forward ren-
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dering stages as a unified differentiable pipeline within an analysis-
by-synthesis framework.

The current state-of-the-art techniques [SBT∗19, ZHSJ19,
WYL∗20, NLML20, POL∗21, YNK∗22] employ neural networks
to approximate the forward rendering stage without explicitly con-
sidering the physical principles involved. In particular, the physical
principle of shadows is often ignored; shadows appear when the tar-
get geometry occludes the incoming light. Explicitly modeling such
light occlusion within a differentiable rendering pipeline has been
proven challenging; recent approaches only support hard shad-
ows caused by a single point/directional light [HSB∗22, WA23] or
adopt a computationally expensive solution via non-differentiable
ray tracing with a pre-inferred geometry [JYG∗22]. Consequently,
neural networks in the state-of-the-art techniques struggle to learn
complicated shadow patterns and yield blurry shadows or flickering
artifacts with dynamic lighting.

In this paper, we step forward to reproduce physically plausible
shadows for all-frequency relighting of human images. We simul-
taneously model the target geometry and environment illumination
as a depth map and a fixed number of area lights within a differ-
entiable framework to reproduce hard-to-soft shadows caused by
multiple area lights. The ground-truth area lights for supervised
learning are obtained via a novel optimization-based approach. We
also infer the diffuse and specular reflectances of the target person
for physically based shading. Such geometry and reflectance infor-
mation is easier to learn with neural networks because it is simpler
than the complicated shadow and reflection patterns. We demon-
strate that our physically based formulation yields more plausible
and stable relighting results even under dynamic lighting than the
existing approximate solutions using neural networks (Figure 1).

In summary, our contributions are as follows:

• a two-stage relighting framework with explicit calculations of
physically-based shadows and shading,

• a novel approximation of environment illumination with a fixed
number of directional lights with area information,

• a differentiable soft shadow calculation with shadow refinement
to compute all-frequency shadows, and

• a large-scale synthetic dataset of full-body human images, in-
cluding ground-truth geometry and reflectance.

We will release our source codes, trained models, and synthetic
dataset upon publication.

2. Related Work

There have been numerous studies of single-image relighting. In
the following, we focus on our main target, human image relight-
ing. We categorize the previous work in terms of whether they ex-
plicitly calculate physically-based shading, use neural network ap-
proximations, or explicitly consider shape when calculating shad-
ows.

2.1. Relighting with Physically-based Shading

To calculate physically-based shading, second-order spherical har-
monics (SH) have often been used to account for diffuse-only en-
vironmental lighting. MoFA [TZK∗17] leverages morphable 3D

face models [PKA∗09] for face relighting. SfSNet [SKCJ18] em-
ploys face inverse rendering to estimate the normal map, diffuse re-
flectance, and illumination and then performs relighting by replac-
ing the estimated illumination with a new illumination. These face
relighting techniques ignore light occlusion due to the almost con-
vex face shapes. In full-body relighting, however, light occlusion
is common around limbs and cloth wrinkles and thus should not
be ignored. As the first single-image full-body relighting method,
Kanamori and Endo [KE18] extended SfSNet [SKCJ18] to con-
sider light occlusion explicitly in the second-order SH formulation
by inferring light transport maps with light occlusion, instead of
normal maps.

The diffuse-only method [KE18] is extended to handle specular
reflections. Tajima et al. [TKE21] introduced a refinement network
module on top of [KE18] to handle specular reflection and domain
adaptation to in-the-wild photographs. Lagunas et al. [LSY∗21]
represented the per-pixel exiting radiance as a double product of
fourth-order SH to account for various lighting effects, including
specular reflection. However, it is well known that the low-order SH
representations cannot represent high-frequency shading and shad-
ows. Our method calculates all-frequency shading and shadows by
each of multiple area lights without using SH representations.

2.2. Relighting with Neural Network Approximations

The traditional physically-based calculation of shading and shad-
owing is complicated and thus often fully or partially replaced with
neural network approximations in modern relighting techniques.
Early attempts of full approximations [SBT∗19, ZHSJ19] formu-
late relighting as image-to-image translation using single U-Net-
like architectures, where new light information is injected at the
bottleneck. Unfortunately, these methods do not have mechanisms
to handle high-frequency signals. Song et al. [SCCZ21] proposed a
relighting method for half-body portraits but requires another por-
trait as a reference of novel illumination.

Partial neural approximations calculate intermediate compo-
nents and feed them into neural networks for final outputs. Pandey
et al. [POL∗21] calculate multiple frequency bands of Phong-based
specular components and merge them using a neural network. Yeh
et al. [YNK∗22] extended their work for domain adaptation in a
similar spirit to Tajima et al. [TKE21]. However, these methods do
not consider light occlusion explicitly and thus cannot handle high-
frequency shadows. Yu et al. [YME∗20] used a neural network to
estimate shadows during relighting of outdoor scenes. Nestmeyer et

al. [NLML20] and Wang et al. [WYL∗20] introduced neural net-
work modules to estimate specular reflection and shadows. How-
ever, because these neural networks are unaware of the underlying
geometry, they struggle to reproduce complicated patterns of spec-
ular reflection and shadows on diverse full-body human images,
resulting in blurry shadings and shadows as well as flickering arti-
facts with dynamic lighting.

Recent methods based on diffusion models achieve highly
photorealistic relighting with lighting control [PTS23, KJY∗24,
ZDP∗24]. However, the interplay between geometry, material, and
lighting remains a black box, lacking editability. Intuitive and pre-
cise controllability of lighting effects is crucial for relighting.
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Figure 2: Overview of our two-stage relighting approach. Stage 1 applies inverse rendering and calculates a shadow-less shading image for

each light. Stage 2 calculates shadows and multiplies shading images by the shadows and then merges them to output the relighting result.

2.3. Geometry-aware Shadow Calculation

Explicit calculation of light occlusion has been proven to be a
key for high-frequency and stable shadows [GRP22,SZP∗23]. Ji et

al. [JYG∗22] reconstructs a 3D human model [SSSJ20] and applies
ray tracing to calculate all-frequency shadows. Other techniques
for reconstructing animatable 3D avatars [CZA∗22, ICN∗23] can
be used in the same way. However, these methods support dif-
fuse reflection only and rely on offline ray tracing, which is non-
differentiable and computationally expensive. Hou et al. [HZS∗21]
estimated shadow regions on faces via 3D morphable model fitting
but did not support environmental lighting.

Differentiable shadow calculations with geometry information
have appeared recently. Hou et al. [HSB∗22] calculated visibil-
ity sampling for hard shadows by a directional light using ray
marching with face depth maps. To extend this method for full-
body images, however, we have to increase visibility samples
due to the much more complicated geometry, which increases the
computational burden. Even worse, this method entails incom-
plete shadows because depth maps have depth gaps. Worchel and
Alexa [WA23] proposed a differentiable shadow mapping algo-
rithm for a point/directional light source. They use variance shadow
mapping (VSM) [DL06] to enable soft rasterization for differen-
tiable calculation. Although VSM was originally proposed to cal-
culate soft shadows, their method is tailored for point or directional
light sources and thus cannot handle soft shadows as is. Contrarily,
our method calculates differentiable soft shadows by an area light
based on convolutional shadow mapping (CSM) [AMB∗07]. Ta-
ble 1 summarizes the taxonomy of recent techniques for geometry-
aware shadow calculation.

3. Method

Figure 2 shows the overview of our method. The inputs of our
method are a full-body human image, its binary mask (obtained
via off-the-shelf service [Kal] or software [Adoa]), and a new en-
vironmental illumination for relighting. We employ a two-stage
approach to handle shading and shadows as follows. In Stage 1,
we first apply inverse rendering to obtain diffuse and specular re-
flectance, a set of area lights, and a normal map. We then calculate

Table 1: Taxonomy of recent geometry-aware techniques for

full-body human image relighting and shadow calculation. While

[NLML20,HSB∗22] assume a single directional light, the inference

times were measured using 16 lights similarly to ours.

Approach Light type
Geometry-

aware
Soft

shadow
Differen-

tiable
Inference
time (sec.)

[NLML20] CNN Directional % % % 0.351
[JYG∗22] Ray-tracing + CNN Environmental ✓ ✓ % 3.50
[HSB∗22] Ray-marching Directional ✓ % % 12.5
[WA23] VSM Directional&Spot ✓ % ✓ 0.150
Ours CSM + CNN Area lights ✓ ✓ ✓ 0.835

a shading image for each area light. In Stage 2, we estimate a depth
map, calculate shadows for each area light, multiply the shadow
maps pixel-wise by the shading images obtained in Stage 1, and
then merge them to obtain the final output.

We approximate an environmental illumination as a set of a fixed
number of area lights. The motivation for using area lights as an ap-
proximation to HDRI maps is to explicitly capture the strong light
that causes noticeable highlights and cast shadows, which is diffi-
cult to achieve with low resolution HDRI maps and lighting repre-
sentations with low order spherical harmonics. Let NL be the num-
ber of area lights. Each area light l ∈ {1, . . . ,NL} is parameterized
with an RGB intensity Lint

l ∈R
3, light direction Ldir

l ∈R
3, and area

(denoted as the standard deviation σl of light l’s Gaussian kernel).
We represent these seven parameters for each area light as a light
tensor L ∈ R

NL×7.

3.1. Stage 1: Inverse Rendering and Light-wise Shading

In Stage 1, we perform inverse rendering and obtain a shading im-
age lit by each area light while accounting for both diffuse and
specular reflections. First, we estimate a set of a fixed number
of area light sources, normal maps, diffuse albedo, specular and
roughness maps from the input image through the inverse ren-
dering network, which has a U-Net-like architecture with a sin-
gle encoder and three decoders. The diffuse albedo and specu-
lar/roughness maps are estimated simultaneously by the same de-
coder. Next, we calculate diffuse and specular shading. To simplify
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the shading calculation, we approximately handle each area light
as a directional light; i.e., we ignore the area information, which
is later utilized in calculating soft shadows in Stage 2. The dif-
fuse shading is calculated from the inferred normal map and each
light based on the Lambert model. The specular shading is cal-
culated from the inferred normal map, specular/roughness maps
and each light based on the Disney principled BRDF [BS12].
Note that these shading images do not contain shadows, which are
later calculated and multiplied pixel-wise in Stage 2. Our explicit
lighting calculation allows us to integrate analytical BRDFs, un-
like BRDF approximations used in lighting with spherical Gaus-
sians (SGs) [WRG∗09, XSD∗13, ZLW∗21], thereby avoiding er-
rors caused by BRDF approximation. A detailed discussion with
SG-based methods is provided in the supplemental material.

We organize the mathematical symbols used in this paper. The
super-scripts “diff ” and “spec” indicate diffuse and specular com-
ponents, respectively. Hat ^ indicates inferred data. l-indexing indi-
cates that the datum is inferred for area light l. Hat-less symbols are
the corresponding ground truth, which are obtained using an offline
ray tracer with an environment light (i.e., without discrete approx-
imation and thus without l-indexing). We define inferred tensors
as follows. Let Ŝl and V̂l be shading and shadow images, respec-
tively. We then define a shadowed shading as Ŷl = V̂l ⊙ Ŝl (where
⊙ denotes the Hadamard product). We also define shadow-less re-

constructions for diffuse component R̂
diff
l

= Â⊙ Ŝ
diff
l

(where Â de-
notes a diffuse albedo) and for both diffuse and specular compo-
nents R̂

full
l

= Â⊙ Ŝ
diff
l

+ Ŝ
spec
l

.

For the supervised learning in Stage 1, we use L1 losses for
the inferred diffuse albedo and specular/roughness/normal maps
obtained via inverse rendering and for shading images {Ŝl} and
shadow-less reconstructions {R̂l} as follows.

Ltexture = ∑
T∈T

∥

∥T− T̂
∥

∥

1 , (1)

Ldiff shading =

∥

∥

∥

∥

∥

S
diff −

NL

∑
l=1

Ŝ
diff
l

∥

∥

∥

∥

∥

1

, (2)

Lspec shading =

∥

∥

∥

∥

∥

S
spec −

NL

∑
l=1

Ŝ
spec
l

∥

∥

∥

∥

∥

1

, (3)

Ldiff recon =

∥

∥

∥

∥

∥

R
diff −

NL

∑
l=1

R̂
diff
l

∥

∥

∥

∥

∥

1

, (4)

Lfull recon =

∥

∥

∥

∥

∥

R
full −

NL

∑
l=1

R̂
full
l

∥

∥

∥

∥

∥

1

, (5)

where T is a set of four types of texture maps T, i.e., diffuse albedo,
roughness map, specular map, and normal map.

We also use the VGG loss [SZ15] for the diffuse albedo Â, spec-
ular shading Ŝ

spec
l

, and shadow-less reconstruction R̂
full
l

:

Lvgg = VGG(A, Â)+VGG(Sspec
,

NL

∑
l=1

Ŝ
spec
l

)

+VGG(Rfull
,

NL

∑
l=1

R̂
full
l

),

(6)

where VGG is a function to calculate the VGG loss.

The illumination of the input image is estimated so that in-
put image can be reconstructed. To learn the light parameters
{L̂int

l , L̂dir
l , σ̂l} for area light l, we do not use loss functions with

their ground truth; our area light set is a discrete approximation
of an environment light and is not necessarily unique. For exam-
ple, there are countless arrangements of area lights to approximate
a cloudy sky. In fact, we could not learn these parameters using
loss functions with their ground truth. We instead learn these pa-
rameters via shading images {Ŝl} and shadow-less reconstructions
{R̂l}. The light intensity L̂int

l and direction L̂dir
l are learned via

Equations (2) to (5). To learn the area information σ̂l , we calculate
soft shadows using our differentiable convolutional shadow map-
ping (DCSM) function (elaborated in Section 3.2.2), and compare
with the ground-truth shadowed shading Ydiff :

Ṽl = DCSM(D,D(L̂dir
l ), σ̂l), (7)

S̃
diff
l

= LAMBERT(N,D(L̂dir
l ),D(L̂int

l )), (8)

Lσ =

∥

∥

∥

∥

∥

Y
diff −

NL

∑
l=1

Ṽl ⊙ S̃
diff
l

∥

∥

∥

∥

∥

1

, (9)

where DCSM and LAMBERT are functions to calculate soft shad-
ows and Lambert shading, respectively. D and N denote the ground-
truth depth and normal maps. D is a detaching operator to detach
the argument’s gradient from the computational graph. We detach
the light intensity L̂int

l and direction L̂dir
l so that loss function Lσ

can focus on the learning of σl ; without detaching, we could not
learn σl well because of the ambiguity of soft shadows.

In summary, the final loss function used for Stage 1 is as follows:

Ldecomposition = Ltexture +Ldiff shading +Lspec shading

+Ldiff recon +Lfull recon +λvggL
vgg +λσL

σ
,

(10)

where λvgg = 0.1 and λσ = 0.01.

3.1.1. Background-aware light estmation

For light estimation, while previous methods [KE18, TKE21,
LSY∗21] discard the background information in input images by
multiplying them by binary masks, we exploit the background in-
formation to improve the light estimation accuracy. Specifically,
we concatenate an input image (including the background) and a
binary mask to feed the network. Figure 3 shows a qualitative com-
parison of the light source estimation with and without the back-
ground. By including the background, albedo estimation accuracy
is improved because the background region provides a cue for color
constancy. Improved albedo estimation leads to better normal and
lighting estimation accuracy through the shared network compo-
nents.

3.2. Stage 2: Shadow Calculation and Multiplication

The goal of Stage 2 is to calculate shadows, multiply a shading
image by the shadow for each light, and then merge the shadowed
reconstructions to generate the final relighting result (see Figure 2,
right). We first estimate a depth map from the input image using a
depth estimation network. Next, from the estimated depth map and
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Figure 3: Validation of background-aware light estimation. Top

row: spheres shaded with the estimated lights. Bottom row: esti-

mated normal maps.

area lights, we calculate shadows. Although we calculate soft shad-
ows using our differentiable version of convolutional shadow map-
ping [AMB∗07], we find that the soft shadows do not exhibit sharp
boundaries near the occludee’s surface, which are crucial to repro-
duce all-frequency shadows. We thus calculate standard shadow
mapping as well and merge the hard and soft shadows via a shadow
refinement network. We elaborate on each step as follows.

3.2.1. Depth estimation network

We use a U-Net-like architecture to estimate a depth map from an
input image (see the supplemental material for our alternative net-
work designs). To ignore absolute depth differences during train-
ing, we employ a scale-invariant L1 loss Lsi.

µD =
1

∥M∥1
M⊙ (D−D(D̂)), (11)

Lsi =
∥

∥D− (D̂+µD M)
∥

∥

1 , (12)

where M is a binary mask and µD is a scalar value. While Eigen
et al. [EPF14] defined a scale-invariant loss as L2 loss with log-
space depth because they wanted to emphasize near pixels while
marginalizing far pixels. We do not have to use log-space depth
because the depth of human bodies is within a short range, unlike
general indoor/outdoor depth maps. In our case, however, we can-
not determine the absolute depth only with the scale-invariant loss,
so we restrict output depth values within [0,1] by adding a sigmoid
function at the last layer in the network.

We also introduce a regularization term to smooth the surface
because slight irregularities in the depth map can cause serious ar-
tifacts in the shadow calculation. Specifically, we apply L1 loss to
the gradient of depth maps, as Eigen and Fergus [EF15] did with
L2 loss:

Lslope =

∥

∥

∥

∥

∂D

∂x
−

∂D̂

∂x

∥

∥

∥

∥

1
+

∥

∥

∥

∥

∂D

∂y
−

∂D̂

∂y

∥

∥

∥

∥

1
. (13)

The final loss function is

Ldepth = Lsi +λslopeLslope, (14)

where λslope = 0.01.

3.2.2. Differentiable convolutional shadow mapping (DCSM)

While the original convolutional shadow mapping
(CSM) [AMB∗07] is non-differentiable, we make it differen-
tiable and implement it using nvdiffrast [LHK∗20]. With our
differentiable CSM (or DCSM), we can learn the area information
of area lights required for calculating soft shadows (Section 3.1)
and obtain a set of area lights as a discrete approximation of an
environmental illumination via optimization (Section 4.2).

We briefly review CSM. Let x be a point on the surface visible
to the camera, d(x) the distance from x to the light source, p the
position of the obstacle when trying to view x from the light source,
and z(p) the distance from p to the light source. The binary shadow
test function, which determines whether a point is in shadow or not,
is defined as follows:

f (d(x),z(p)) =

{

1 if d(x)≤ z(p)

0 otherwise,
(15)

where 0 indicates shadowed and 1 unshadowed. f is essentially a
Heaviside step function and therefore discontinuous. CSM approx-
imates Equation (15) with a continuous function by expanding it
with Fourier series.

f (d(x),z(p))≈
K

∑
i=1

ai(d(x))Bi(z(p)), (16)

where Bi is a basis function of z(p), each basis being weighted by
a coefficient ai which depends on d(x). K is the truncation order,
and it is known that small K reduces the approximation accuracy,
causing light bleeding and ringing. We set K = 8 in our method.
CSM can vary the shadow hardness/softness via convolution with
an arbitrary kernel wσ. The convolved version s f of f is as follows:

s f (d(x),z(p)) = [wσ ∗
K

∑
i=1

ai(d(x))Bi(z(p))](p)

=
K

∑
i=1

ai(d(x))[wσ ∗Bi(z(p))](p),

(17)

where [w ∗ g](p) means a convolution of g by the kernel w in
the neighbourhood of p. In CSM, the shadow hardness is deter-
mined by the kernel size, which is an integer value and thus non-
differentiable.

To make CSM differentiable, we control the kernel size indi-
rectly via the standard deviation σ of a Gaussian kernel, which is
continuous and thus differentiable. We determine the kernel size as
2⌈3σ⌉+1 (where ⌈x⌉ denotes the smallest integer equal to or larger
than x) because 6σ has more than 99% coverage.

As an alternative to CSM, we also made exponential shadow
mapping (ESM) [AMS∗08] differentiable because ESM was pro-
posed as an improved version of CSM. However, we found such
differentiable ESM slows down optimization; clamping values
greater than one in the shadow test function hinders gradient prop-
agation.

© 2025 Eurographics - The European Association
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3.2.3. Shadow refinement network

Unfortunately, our DCSM inherits the limitation of the original
CSM; although soft shadows in the real world have varying shadow
hardness because the penumbra widths vary with the distance be-
tween the occluder and occludee, CSM does not take this into ac-
count. Even worse, shadows obtained from a depth map are often
incomplete due to the missing geometry between depth gaps.

To address these problems, we also calculate hard shadows for
high-frequency shadows and merge the hard and soft shadows via a
shadow refinement network that also has a U-Net-like architecture.
The hard shadows are calculated from a 3D mesh reconstructed
from the depth map as a byproduct of DCSM and thus without ad-
ditional burden. We find that the standard deviation σ of a Gaussian
kernel well represents the shadow softness, so we feed not only the
hard and soft shadows but also a constant map of σ after concate-
nating them for each area light (see Section 5.2.1 for the ablation
study with and without σ).

To train the shadow refinement network, we define a loss func-
tion with the refined shadow V̄l obtained from the shadow refine-
ment network and the ground-truth shadowed shading Ydiff as fol-
lows:

S
diff
l

= LAMBERT(N,L
dir
l ,L

int
l ), (18)

Lrefinement =

∥

∥

∥

∥

∥

Y
diff −

NL

∑
l=1

V̄l ⊙S
diff
l

∥

∥

∥

∥

∥

1

. (19)

4. Dataset

4.1. Full-body Human Dataset

We create a synthetic 3D human model dataset using Blender’s add-
on tool for generating 3D human models [Pos] to obtain ground-
truth full-body human image data. The 3D human models include
non-diffuse materials based on a simplified version of the Disney
principled BRDF, but the subsurface scattering, anisotropy, and
metal parameters are not considered. The identity, standing pose,
clothing, and camera direction of each 3D human model were ran-
domly determined, resulting in 2,500 3D human models with dif-
ferent identities. Of these, 2,400 were used for training and 100 for
testing. For each 3D human model, we render a binary mask, dif-
fuse albedo map, specular map, roughness map, normal map, and
depth map at a resolution of 1024× 1024 pixels. The ground truth
data for the relighting images was rendered using ray tracing with a
virtual light stage created in Blender using HDR environment maps
collected from Poly Haven [Pol] without considering indirect illu-
mination. 487 environment maps were used for training and 34 for
testing. For each 3D human model, eight environment maps were
randomly selected and randomly rotated along the longitude to in-
crease the variation. Figure 4 shows some example data used in our
experiments. We also used 541 scanned 3D human models obtained
from various commercial websites to further increase the variation.
Note that some of the scanned models do not contain ground-truth
specular and roughness maps, so for such data, we omit the corre-
sponding loss functions during training.

4.2. Area Light Dataset

We create a dataset of our area light approximations of environ-
mental lights. The source environment maps are the same HDR
images as those used for background images. To construct a
discrete approximation of environmental illumination, Annen et

al. [ADM∗08] proposed a greedy algorithm that outputs a varying
number of area lights. Their approach is not suited for our purpose
because we want a fixed-size tensor to learn using our inverse ren-
dering network. We propose a novel optimization-based algorithm
to output a fixed number of area lights.

As discussed on Lσ (Equation 9) in Section 3.1, we focus on
shading images as the cue for optimization. Specifically, we put a
hemisphere on a plane, illuminate the scene with the target envi-
ronment illumination, and arrange area lights so that the shading
and shadows match with those lit by the environment illumination.
Not to miss strong incoming lights, we rotate the environment map
five times by 72◦ in longitude and ±90◦ in latitude, resulting in
seven images of shading and shadows rendered using ray tracing
at the resolution of 256× 256 pixels. Each optimization iteration
accounts for these seven images simultaneously (for simplicity, we
omit the loop for these seven images). Figure 5 shows the overview
of the optimization process. We optimize light intensity Lint

l , direc-
tion Ldir

l , and standard deviation σl of light l’s Gaussian kernel for
each area light l ∈ {1,2, . . . ,NL}. The optimization process under-
goes the following three steps:

Step 1: Initialize {σl ,L
int
l ,Ldir

l },
Step 2: Optimize Lint

l and Ldir
l of each light l, and

Step 3: Optimize σl of each light l, while fixing Lint
l and Ldir

l .

Step 1 initializes the light directions so that NL lights distribute
uniformly on the environment map. The light intensities and σl are
initialized with constant values. The initial value of σl depends on
the shadow map resolution. In our case, we set σl = 10 for a 256×
256 shadow map.

Step 2 utilizes both diffuse and specular shadings to optimize
the intensity and direction of each light. As alternative strategies,
diffuse-only reflection results in blurry shading and yields a high
degree of freedom in light directions, whereas specular-only shad-
ing causes a concentration of light directions contributing to the
most glossy directions, reducing the reproducibility of diffuse shad-
ing. We set the specular and roughness parameters as 0.5. The fol-
lowing L1 loss functions are used for optimization:

Ldiff =
∥

∥

∥
S

diff sph − Ŝ
diff sph

∥

∥

∥

1
, (20)

Lspec =
∥

∥

∥
S

spec sph − Ŝ
spec sph

∥

∥

∥

1
. (21)

Furthermore, each light direction is encouraged to move away from
each other to avoid overlapping light directions. Specifically, we
add a regularization term so that the dot product of each light di-
rection pair is not greater than τ.

Lrep =
1

NL(NL −1)

NL−1

∑
l=1

NL−1

∑
m ̸=l

∣

∣

∣
max(τ,

〈

L̂
dir
l , L̂

dir
m

〉

− τ)
∣

∣

∣

2
. (22)

We set τ = 0.65.

In Step 3, naïvely optimizing σl in terms of luminance does not
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Figure 4: Example data generated from a 3D human model.
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Figure 6: Visualization of optimized light parameters on an envi-

ronment map. The light’s area is visualized as the rectangle size,

while the rectangle color indicates the light’s intensity.

work well because most pixels are inside or outside shadows and
their luminance values do not change during optimization. We thus
put emphasis on shadow boundaries by applying a Laplacian filter:

V̂
sph
l

= DCSM(Dsph
,D(L̂dir

l ), σ̂l), (23)

Llap = ∑
k∈{15,21,33}

∥

∥

∥

∥

∥

Lk

(

Y
diff sph

)

−Lk

(

NL

∑
l=1

V̂
sph
l

⊙D(Ŝ
diff sph
l

)

)∥

∥

∥

∥

∥

1

,

(24)

where Dsph is the ground-truth depth map, V̂sph is the inferred shad-
ows of each light source, Lk is a Laplacian operator with kernel
size k×k, and Ydiff sph is the ground-truth shadowed shading for
diffuse component.

Regarding the choice of the number of area lights, NL, the larger
NL is, the better accuracy we can obtain with more computational

cost. We use NL = 16 throughout this paper due to the trade-off
between the accuracy and computational cost. See Appendix A for
our experiment with different NL.

The optimization was implemented using Python and PyTorch
and performed on NVIDIA RTX A5000. We used Adam as an
optimizer, setting the exponential decay rates for the moment es-
timates as {0.5, 0.999}. The learning rate was controlled in the
range of [1, 0.00001] by the cosine annealing scheduler within 20
epochs per cycle. Each step took 1,000 iterations and 300 iterations
to converge. The optimization took about 5 minutes per environ-
ment map. Figure 6 visualizes the final area light parameters. For
each light, the light intensity is color-coded and σl value is visual-
ized as the size of rectangle. We can observe that the area lights are
distributed appropriately in the environment map.

5. Experiments

5.1. Implementation details

We implemented our method using Python and PyTorch and per-
formed training and inference on NVIDIA RTX A5000. We trained
the inverse rendering network (Stage 1), depth estimation network,
shadow refinement network (Stage 2) separately. We used Adam as
an optimizer, setting the exponential decay rates for the moment
estimates as {0.5, 0.999}. We used the cosine annealing sched-
uler to control the learning rate in the range of [0.01, 0.00001]
within 20 epochs per cycle. Our batch size was eight. The compu-
tational times for one-epoch training of the inverse rendering net-
work, depth estimation network, and shadow refinement network
were about 60, 50, and 50 minutes, respectively, when we used one
GPU to process 1024 × 1024 images. We terminated the training at
300, 500, and 120 epochs for the respective networks, where each
learning curve reached a plateau. The time for testing a 1024×1024
input image was about 1.01 seconds. As the time breakdown, in-
verse rendering network, depth estimation network, shadow map-
ping, shadow refinement network, and relighting took about 0.156,
0.0322, 0.747, 0.0875, and 0.0316 seconds, respectively.

5.2. Ablation Studies

We first conduct ablation studies using our dataset to evaluate the
effectiveness of our method for improving shadows and specular
components.

© 2025 Eurographics - The European Association
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5.2.1. Comaprison with different types of shadows

Figure 7 shows a comparison with standard shadow mapping (SM),
convolutional shadow mapping (CSM), and our shadow refinement
network. Here, “Refined w/o CSM or σ” means that the shadow
refinement network does not use soft shadows by CSM or standard
deviation σ as input, and “Refined w/o CSM” means that it does
not use soft shadows by CSM. As can be seen in the results, “SM”
exhibits noticeable jaggies in the shadow contours by trying to ap-
proximate the environment light using a small number of lights.
“CSM” can mitigate this problem using area lights but causes light
bleeding when an occludee is near an occluder. In addition, “CSM”
cannot reproduce contact shadows according to the distance be-
tween an occludee and an occluder. “Refined w/o CSM or σ” can
reproduce contact shadows, but the shadows have the same soft-
ness regardless of the lights because no area light information is
given. Meanwhile, “Refined w/o CSM”, which uses a σ map as in-
put, reproduces not only contact shadows but also shadow softness
depending on the area lights. Using soft shadows as an additional
input, “Ours (full)” reproduces the most accurate shadows. In ad-
dition, as shown in the quantitative results in Table 2, we can see
step-by-step improvements by using CSM and a σ map as input of
“Ours (full)”. Ours also achieved the best scores in all metrics.

5.2.2. Comparison of specular components

To evaluate the effectiveness of specular shading by the Disney
principled BRDF, we compare it with the Blinn-Phong reflection
model. To do so, we estimate a Blinn-Phong specular exponent
map instead of a specular map and a roughness map using the in-
verse rendering network. Because ground-truth exponent maps are
unavailable, we trained the model by computing the losses only for
relit images containing specular shading. Figure 8 and Table 3 show
the qualitative and quantitative results, respectively. The Blinn-
Phong reflection model causes errors, especially around grazing
angles, because it is less physically-plausible. In addition, we can
see that a single parameter is insufficient to reproduce reflectance
properties in clothed full-body human images.

5.2.3. Comparison of relighting

We verified the effectiveness of the shadows and specular reflec-
tions considered in our method with relighting results. We quan-
titatively compared the following four conditions: no shadow or
specularity (“Ours w/o shadow or specular”), no shadow refine-
ment or shadow (“Ours w/o refinement or specular”), no specular
(“Ours w/o specular”) and “Ours (full)”. A quantitative compari-
son of the relit results is shown in Table 4. “Ours w/o refinement
or specular” with direct use of shadows by CSM improved accu-
racy in all metrics except LPIPS compared to “Ours w/o shadow
or specular”. “Ours w/o specular” with shadow refinement shows
a further improvement in the accuracy of estimating the relighting
results. Furthermore, “Ours (full)”, which takes specular into ac-
count, shows a significant effect on the accuracy improvement.

5.3. Comparison with Existing Methods

We compared our method with existing relighting methods spe-
cialized for human face images [SBT∗19, NLML20, HSB∗22],

Table 2: Quantitative comparison of shading with shadows

(mean±standard deviation). The best scores are in bold, and the

second-best scores are underlined. Each method is explained in

Section 5.2.1.

RMSE↓ SSIM↑ LPIPS↓

[NLML20] 0.457±0.627 0.457±0.190 0.106±0.0215
[HSB∗22] 0.141±0.0590 0.636±0.114 0.0722±0.0197
[JYG∗22] 0.145±0.0619 0.612±0.110 0.0891±0.0156

Ours 0.100±0.0454 0.709±0.110 0.0610±0.0180

Refined w/o CSM 0.101±0.0455 0.708±0.110 0.0611±0.0180

Refined w/o CSM orσ 0.102±0.0462 0.704±0.109 0.0618±0.0180
CSM 0.142±0.0548 0.652±0.111 0.0703±0.0203
SM 0.135±0.0542 0.646±0.112 0.0702±0.0190

upper body images [POL∗21], and full-body humans [LSY∗21,
TKE21, JYG∗22]. We used the public pre-trained models for sev-
eral methods [TKE21, LSY∗21] and trained the models using our
CG dataset from scratch for the other methods. For the meth-
ods [NLML20, HSB∗22], which assume relighting with a single
directional light, we used 16 directional lights obtained from our
16 area lights, while ignoring σ, for a fair comparison.

5.3.1. Comparison of shadows

Table 2 and Figure 9 show the quantitative and qualitative com-
parisons with the existing relighting methods that explicitly gen-
erate shadows. The method by Nestmeyer et al. [NLML20] fails
to reproduce shadows because it does not consider human shapes
during visibility estimation with a CNN. This method also has the
highest standard deviation compared to the other methods. This is
because learning to estimate shadows with varying illumination and
geometry is more difficult than estimating shape alone and per-
forming physical lighting calculations. Although the method by
Hou et al. [HSB∗22], like our method, uses meshes reconstructed
from depth maps, it reproduces only hard shadows caused by direc-
tional lights and yields artifacts around the shadow boundaries. The
method by Ji et al. [JYG∗22] also cannot obtain satisfactory results
because of incomplete meshes estimated using PIFuHD [SSSJ20]
and insufficient refinement by their shadow refinement module. In
contrast, our method has fewer shadow artifacts due to the lack of
complete geometry in the invisible regions. Furthermore, the use
of area light sources allows us to reproduce low to high-frequency
shadows.

As for computational time, these existing methods took about
17 seconds [HSB∗22] and 13 seconds [JYG∗22] to relight a single
image. These computational times consist mainly of 3D reconstruc-
tion and shadow calculation. Meanwhile, our method is much faster
and took about 1 second for inference.

5.3.2. Comparison of specular components

Figure 10 shows a comparison of specular shading with the exist-
ing methods. For the method by Pandey et al. [POL∗21], we com-
puted a pseudo-specular output by subtracting a diffuse-only relit
image generated using a diffuse light map from a final relit image.
[LSY∗21] reproduces gloss using fourth-order spherical harmon-
ics but fails to adequately approximate the high-frequency compo-
nents of the environmental lighting. On the other hand, the meth-
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SM CSM Refined w/o CSM or σ Refined w/o CSM Ours (full) GTInput

Figure 7: Ablation study of shading with shadows. The environment map for relighting and its reference shading/shadowing pattern with a

sphere are visualized above the input image. The rectangles emphasize the differences. Each method is explained in Section 5.2.1.

Input w/ Blinn-Phong Ours GT

Figure 8: Ablation study of specular components. For better visu-

alization, the output images are uniformly multiplied by a constant

factor.

ods approximating gloss using neural networks [NLML20,TKE21,
POL∗21] struggle to learn gloss effectively, leading to blurry out-
put. This can be also observed in their large standard deviations. In
contrast, our method exhibits high-frequency specular reflection on
skin regions in the results. The quantitative comparison in Table 3
also shows that our method achieves the best performance in all
metrics.

5.3.3. Comparison of relighting results

Table 4 and Figures 12 and 13 show the quantitative and qualitative
comparisons of relighting results between our method and exist-
ing methods, respectively. The real images in Figure 12 were taken
from Unsplash, while Figure 13 used the SHHQ dataset [FLJ∗22].
For the real photograph inputs, there is no ground-truth relit im-
age. The shadows and highlights in the input images do not affect
the relighting results so much, thanks to the clean synthetic train-
ing data. This benefit is shared not only by our method but also by
other methods trained on the same dataset. The methods [SBT∗19,

Input GT[NLML20] [HSB*22] [JYG*22] Ours

Figure 9: Qualitative comparison of shading with shadows be-

tween our method and the existing methods.

Table 3: Quantitative comparison of specular shading

(mean±standard deviation). For the method by Pandey et
al. [POL∗21], we compute a pseudo-specular output from the

difference between a relit image and a diffuse-only relit image.

RMSE↓ SSIM↑ LPIPS↓

[NLML20] 0.0506±0.0530 0.741±0.124 0.0813±0.0155
[LSY∗21] 0.0564±0.0517 0.460±0.163 0.208±0.0428
[TKE21] 0.0484±0.0345 0.406±0.172 0.107±0.0155
[POL∗21] 0.0484±0.0343 0.479±0.155 0.0910±0.0170

Ours 0.0334±0.0262 0.835±0.0908 0.0698±0.0127

Blinn-Phong 0.0390±0.0295 0.746±0.106 0.0898±0.0132

NLML20] that do not consider the physical laws overall yielded
blurry outputs. Because the studies [LSY∗21, TKE21] use illumi-
nation approximated with low-order SH, they struggle to approx-
imate high-frequency illumination, and the contrast of the shad-
ing becomes strong. Because of the same reason, these methods
cannot also reproduce high-frequency highlights and shadows. The
method by Pandey et al. [POL∗21] handles low-frequency high-
lights but fails to reproduce high-frequency highlights and shad-
ows. [HSB∗22] uses directional light sources to represent illumi-
nation and cannot handle low-frequency shadows, resulting in no-
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GTInput [NLML20] [LSY*21] [TKE21] [POL*21] Ours

Figure 10: Qualitative comparison of specular components be-

tween our method and the existing methods.

Table 4: Quantitative comparison of relighting results

(mean±standard deviation).

RMSE↓ SSIM↑ LPIPS↓

[SBT∗19] 0.122±0.0944 0.712±0.148 0.0556±0.0196
[NLML20] 0.137±0.0843 0.678±0.117 0.0717±0.0157
[LSY∗21] 0.224±0.122 0.483±0.149 0.162±0.0437
[TKE21] 0.173±0.0980 0.586±0.166 0.0737±0.0206
[POL∗21] 0.111±0.0645 0.692±0.116 0.0538±0.0145
[HSB∗22] 0.101±0.0723 0.632±0.120 0.0598±0.0235
[JYG∗22] 0.121±0.0650 0.686±0.110 0.0819±0.0132

Ours (full) 0.0744±0.0411 0.787±0.0973 0.0493±0.0131

Ours w/o specular 0.0780±0.0415 0.771±0.0972 0.0502±0.0133
Ours w/o refinement or specular 0.0882±0.0479 0.757±0.100 0.0528±0.0135
Ours w/o shadow or specular 0.0946±0.0559 0.753±0.103 0.0518±0.0138

ticeable artifacts around shadow boundaries. In addition, the mesh
recovered from the depth map lacks invisible geometry, resulting in
inaccurate shadows. In addition, this method is limited to diffuse re-
flections and cannot reproduce gloss. [JYG∗22] can also reproduce
high-frequency shadows by ray-tracing, but artifacts are noticeable.
This is due to the presence of many defects and artifacts in the 3D
reconstruction results by PIFuHD [SSSJ20]. In addition, it is lim-
ited to diffuse reflections and cannot reproduce gloss. Our method
can generate high-frequency shadows due to the light occluded by
hands and legs, as well as natural skin highlights, by performing
physically-based lighting with specular component and 3D geome-
try. More results are contained in the supplementary material.

To further validate our method, we conducted a user study with
20 real images collected from Unsplash and lit under natural il-
lumination. We compared four methods with the top scores with
synthetic data. 22 subjects were requested to pick the most natural
relighting result for each input image, emphasizing facial highlights
and shadows around arms and clothes. Consequently, the selec-
tion percentages are: [SBT∗19] 4.1%, [POL∗21] 16.6%, [HSB∗22]
18.6%, and ours 60.7%, which means that ours outperforms other
methods. The relighting results used in the user study are published
in the supplementary material.

5.3.4. Evaluation of temporal consistency

We evaluated the temporal consistency for relit videos obtained us-
ing dynamic lights. For 10 static 3DCG human data of different
identities, we generated 20 videos consisting of 128 frames by ro-

Table 5: Quantitative comparison of temporal consistency for dy-

namic lights and people using our metric (Equation (26)).

∂RMSE ↓

Dynamic lights Dynamic people

[SBT∗19] 0.473 0.140
[NLML20] 0.447 0.123
[LSY∗21] 0.530 0.176
[TKE21] 0.470 0.132
[POL∗21] 0.394 0.116
[HSB∗22] 0.399 0.121
[JYG∗22] 0.388 0.116
Ours 0.386 0.113

tating two randomly-selected test environment maps in the longi-
tude direction.

A typical evaluation metric for temporal consistency uses a
warping function based on optical flow. However, the warping func-
tion is inappropriate for static humans relit with dynamic lights. Re-
garding evaluation metrics, [LZC∗24] proposed the color distribu-
tion consistency index (CDC) as a measure of temporal consistency
when applying a colorization task to each video frame. CDC cal-
culates the similarity of the color distribution between consecutive
frames. However, CDC cannot handle dynamically changing color
distributions due to dynamic lighting and prefers blurry frames and
frames without shading changes because CDC does not refer to
ground truth. Therefore, inspired by CDC, we use the following
metric to evaluate frame differences within different frame inter-
vals with reference to ground truth:

∂RMSEt =
1

N f − t

N f −t

∑
i=1

RMSE(Fi+t −Fi, F̂i+t − F̂i), (25)

∂RMSE =
1
3
(∂RMSE1 +∂RMSE2 +∂RMSE4), (26)

where F, N f , and t are the ground-truth relighting frames, the total
number of frames, and the time step, respectively. As with CDC, the
use of different time steps allows for long- and short-term temporal
consistency. The second column of Table 5 shows the results. We
can see that our relighting results faithfully reproduce the changes
in shading, yielding a temporally consistent output.

Furthermore, we quantitatively evaluated the temporal consis-
tency of relighting results with synthetic dynamic people by prepar-
ing eight animation sequences with four rigged human models an-
imated using Mixamo [Adob] and a pair of environment maps for
before and after relighting. The third column of Table 5 shows the
results. Ours yields the least flickering with the best fidelity to the
ground truth.

6. Conclusions

We have proposed a relighting method for full-body images of
clothed humans, taking into account low- to high-frequency specu-
lar reflections and shadows. Our method first applies inverse ren-
dering to the input human image to obtain diffuse and specular
reflectance maps, roughness map, and depth map, and then repro-
duces both low- and high-frequency gloss and shadows based on
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the Disney principled BRDF and convolutional shadow mapping.
A new lighting representation with a fixed number of area lights
was proposed to implement it. The experimental results revealed
that our method reproduces shadows and highlights more plausi-
bly than existing methods that approximate shadows and highlights
using neural networks, demonstrating the effectiveness of formu-
lating highlights and shadows based on physically-based lighting.

7. Limitations & Future Work

Our method has several limitations. The most prominent one is the
CG-like appearance in some of our results. This is primarily be-
cause we rely on our synthetic training dataset to learn glossy re-
flection. However, to the best of our knowledge, there are no other
large-scale human datasets with glossy components. Constructing
a more photorealistic large-scale dataset of 3D human models is
one of our future goals. Furthermore, to bridge the domain gap
between CG and real images, a promising way would be to in-
corporate domain adaptation networks trained on real-world data
(e.g., [TKE21,YNK∗22]). Such domain adaptation techniques will
alleviate residual differences between CG and real images caused
by factors such as indirect illumination, subsurface scattering, and
anisotropic reflections.
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Appendix A: Comparison with Different Numbers of Area Lights

We conducted evaluations with different numbers of area lights,
NL = 8,16,32. A qualitative comparison is shown in Figure 11,
and a quantitative comparison of the relighting results and infer-
ence times is shown in Table 6. In the quantitative comparison, the
accuracy is higher when 32 lights are used for all metrics except
LPIPS, but the inference time is about three times longer than when
16 lights are used, which cannot be ignored for training and testing.
In the qualitative evaluation, some artifacts were observed when 8
lights were used, but by passing through the shadow refinement
network, shadows close to the ground truth were reproduced even
with a small number of light sources. There was little change in
highlights between 16 and 32 lights.

Table 6: Quantitative comparison of relighting results and infer-

ence times with different numbers of area lights.

RMSE↓ SSIM↑ LPIPS↓
Inference
time (sec.)

8 lights 0.0903±0.0527 0.761±0.100 0.0517±0.0146 0.682

16 lights (Ours) 0.0744±0.0411 0.787±0.0973 0.0493±0.0131 1.01
32 lights 0.0729±0.0409 0.790±0.0972 0.0500±0.0132 3.20

8 lights 16 lights 32 lights GT
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Figure 11: Comparison of shadings and shadows for different

numbers of light sources. The top row shows a visualization of op-

timized light parameters on an environment map, the middle row

shows specular shading with shadow, and the bottom row shows

diffuse shading with shadow.
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Input Ours[JYG*22][NLML20] [TKE21][LSY*21][SBT*19] [POL*21] [HSB*22] GT

Figure 12: Qualitative comparison of relighting results. The top two rows show the results for real photographs, whereas the bottom two

rows show the results for synthetic data. Note that there are no ground-truth relit images for the real photographs.
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Figure 13: Qualitative comparison of relighting results using the SHHQ dataset [FLJ∗22]. Note that there are no ground-truth relit images

for the real photographs.
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