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Fig. 1: In the results of age transformation, our method can diversify age-dependent attributes such as hairline,

wrinkles, and face shape while preserving the target age and the person’s identity compared with SAM [3] (top

row). The red rectangles show the differences in age-dependent attributes. We can also more accurately perform

age transformation to childhood (bottom row). We estimated age for each output image using Face++ [9].

Abstract Facial age transformation methods can

change facial appearance according to the target age.

However, most existing methods do not consider that

people get older with different attribute changes (e.g.,

wrinkles, hair volume, and face shape) depending on

their circumstances and environment. Diversifying such
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age-dependent attributes while preserving a person’s

identity is crucial to broaden the applications of age
transformation. In addition, the accuracy of age trans-

formation to childhood is limited due to dataset bias. To

solve these problems, we propose an age transformation

method based on latent space analysis of StyleGAN.

Our method obtains diverse age-transformed images by

randomly manipulating age-dependent attributes in a

latent space. To do so, we analyze the latent space and

perturb channels affecting age-dependent attributes.

We then optimize the perturbed latent code to refine

the age and identity of the output image. We also

present an unsupervised approach for improving age

transformation to childhood. Our approach is based

on the assumption that existing methods cannot suf-

ficiently move a latent code toward a desired direction.
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We extrapolate an estimated latent path and iteratively

update the latent code along the extrapolated path un-
til the output image reaches the target age. Quantita-

tive and qualitative comparisons with existing methods

show that our method improves output diversity and

preserves the target age and identity. We also show that

our method can more accurately perform age transfor-

mation to childhood.

Keywords Age Transformation · Image Editing ·
Deep learning · GAN · Multimodal

1 Introduction

Age transformation is an image editing technique of

changing the appearance of human faces to a given tar-

get age while preserving their identity. This technique

can be useful for various fields, such as film production

and forensics. Previous studies [22,24,18,17] perform
age transformation via manipulation along binary age

attribute directions (i.e., old/young) in a latent space

of pre-trained generative adversarial networks (GANs).

Another study [16] allows the user to specify a tar-

get age group by considering age transformation as

an image-to-image translation task. Recently, Alaluf et

al. [3] introduced a pre-trained age classifier [21] into

training a latent code mapper for age manipulation in

StyleGAN [11,12], and this framework enables specify-

ing arbitrary target ages.

However, these existing methods still have limita-

tions in diversity and accuracy. For diversity, age trans-

formation should have multiple results for a single input

because facial appearance varying due to aging is not

uniquely determined. For example, depending on cir-

cumstances and environment that people experience,

they get older with various changes in, e.g., wrinkles,

hair, and hair color. Several methods such as style mix-

ing [11,3] can diversify the age transformation results,

but they struggle to preserve a target age and a person’s

identity (see the top row in Figure 1). In addition, in

the recent methods [3,7] that use pre-trained age classi-

fiers to specify arbitrary target ages, the transformation

accuracy to childhood age is limited due to the bias in

the training data for the age classifiers (see the bottom

row in Figure 1).

In this paper, we propose a multimodal age trans-

formation method based on latent space analysis of

StyleGAN. To diversify the age transformation results,

our method identifies and perturbs age-dependent at-

tributes, such as wrinkles, hair, hair color, and facial

shape. To this end, we first obtain an age-transformed

latent code from an input face image and a target

age using the pre-trained image-to-latent code mapper

for style-based age manipulation (SAM) [3]. To per-

turb this latent code for age-dependent attributes only,
we leverage StyleSpace (S space) [24], which is one of

StyleGAN’s latent spaces and well disentangled, that is,

each channel controls an independent and fine-grained

attribute. We present an approach based on correla-

tion analysis in S space to identify channels that more

strongly affect the age-dependent attributes and less af-

fect the identity of the input person. Because perturb-

ing the identified channels may cause some deviation

from the target age and identity, we further refine the

latent code via optimization.

In addition, we propose an unsupervised approach

for improving the accuracy of age transformation to

childhood. We suppose that the reason for low accu-

racy for younger age is because the existing methods

cannot sufficiently move a latent code toward a desired

direction. On the basis of this intuition, we extrapolate

a latent path connecting estimated latent codes around

a target age. We then move the latent code toward the

extrapolated direction until the estimated age of the

output image matches the target age. We tried various

extrapolation methods and found that a simple linear

extrapolation was the most effective.

In summary, our main contributions are (i) the mul-

timodal age transformation method based on corre-

lation analysis in S space and (ii) the unsupervised

approach for improving the accuracy of age transfor-

mation to childhood via latent path extrapolation. As

shown in Figure 1 and quantitative and qualitative

evaluations, our method can generate more diversified

outputs preserving target age and identity compared

with existing methods. We also demonstrate that our

method can perform more accurate age transformation

for younger ages.

2 Related Work

2.1 Image-to-image translation

Image-to-image translation is the task of transform-

ing images between domains. This task has attracted

much attention from the advent of pix2pix [10] using

GANs and has been applied to various problems, in-

cluding age transformation. Several studies [5,6,14,23,

16] performed age transformation between pre-defined

age groups. For example, Or-El et al.[16] approximate

continuous appearance changes due to aging as a multi-

domain image-to-image transformation problem. This

method trains translation between images in several

pre-defined age clusters (e.g., 3-6 and 15-19). How-

ever, these age group-based approaches struggle to ac-

curately capture appearance changes between each age
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group, and the user cannot arbitrarily specify the target

age.
Alaluf et al. [3] presented style-based age manip-

ulation (SAM), which handles age transformation as

a regression problem, enabling the user to specify the

target age directly. They trained the image-to-latent

code mapper in an unsupervised manner using pre-

trained StyleGAN and the age classification network.

This method can also diversify age-transformed images

via style mixing. Gomez et al. [7] proposed an age trans-

formation method called CUSP containing two types of

encoders that extract style or content information from

an input image. Applying a variable mask to the skip

connections between the content encoder and the gener-

ator allows the user to control the degree of facial struc-

ture preservation. However, these methods cannot ob-

tain sufficiently diversified results with various changes

of age-dependent attributes while preserving the target

age and identity. For more detail, we show and discuss

comparisons with our method in Section 4.

2.2 Latent space exploration

Many studies have performed age transformation by an-

alyzing the latent space of GANs and finding latent

paths that control specific attributes. Shen et al. [22]

computed a hyperplane corresponding to the separa-

tion boundary for a binary attribute (e.g., gender) from

sampled latent codes. They used the normal vector of

the hyperplane as a latent direction for editing the at-

tribute. However, this method often changes attributes

unrelated to the specified one. Wu et al. [24] found that

S space is better disentangled than other latent spaces
such as W and W+ spaces. They also proposed meth-

ods for detecting locally-active and attribute-specific

style channels in S space. Inspired by their work, we

leverage S space to diversify age-dependent attributes

only while preserving the other attributes. Patashnik

et al. [18] performed text-based StyleGAN image ma-
nipulation. They used CLIP [19] features as input to

train a mapping network between latent codes. They

also proposed a method for identifying and manipulat-

ing channels associated with a text in S space by com-

paring images and texts before and after editing in the

CLIP feature space. These methods can perform well-

disentangled edits but only obtain a single output for a

single input and do not account for multimodality. Par-

ihar et al. [17] used a small number of samples manually

created by simple image composition to find latent di-

rections for editing binary attributes. This method can

diversify the output by manipulating latent codes on a

style manifold obtained from positive samples of sev-

eral different styles for the target attribute. However,

because this method can handle binary attributes only,

it is unsuitable for age transformation taking arbitrary
ages as input.

2.3 Style-based age manipulation (SAM)

This section briefly describes the overview of SAM [3]

because our method builds upon it. Given a face im-

age and a desired target age, SAM outputs a face im-

age with the appearance of the target age. SAM first

embeds the input image into the StyleGAN [12] la-

tent space using a pre-trained pixel2Style2pixel net-

work [20]. The SAM encoder estimates the residual be-

tween latent codes before and after age transformation.

We can obtain an output image by adding the residual

to the embedded latent code and feeding the combined

code to the pre-trained StyleGAN generator. The SAM

encoder is trained by minimizing a loss function be-

tween the target age and the age estimated from the

output image using the pre-trained age classifier [21].

SAM generally assumes only a single result for the

target age. Although style mixing provided by Style-

GAN can diversify the output, it cannot preserve the

target age and identity. In addition, because the editing

accuracy depends on the performance of the age classi-

fier trained with imbalanced data, editing accuracy to

childhood is limited.

3 Method

We describe our multimodal age transformation and

unsupervised latent space exploration in Sections 3.1

and 3.2, respectively.

3.1 Multimodal age transformation

The goal of multimodal age transformation is to di-

versify age-dependent attributes while maintaining the

target age and identity. Figure 2 shows the overall ar-

chitecture of our method. Given a face image x and a

desired target age αtarget as input, our method aims to

obtain a diversified output image y′ corresponding to a

target age αtarget. To this end, we perform additional

operations on an age-transformed latent code w ∈ W+

obtained using SAM [3]. We add a random offset to the

latent code s in S space [24] computed from w in W+

space [2]. To manipulate only age-dependent attributes,

we preliminarily analyze S space and identify channels

that affect age-dependent attributes and do not affect

facial identity (Section 3.1.1). Furthermore, we optimize

the diversified latent code to preserve a target age and

identity (Section 3.1.2).



4

Optimization

SAM

Encoder
StyleGAN

Age- and Identity-Based Perturbation

Fig. 2: Network architecture of our multimodal age transformation method. Given a person image x and a target

age αtarget as input, we obtain an age-transformed latent code w ∈ W+ using the pre-trained SAM encoder E.

We then convert w into s ∈ S through the affine layers of StyleGAN generator G. To diversify age-dependent

attributes, we perform age- and identity-based perturbation for s and obtain sinit. Finally, optimizing sinit using

the four loss functions yields the refined latent code s∗, which is fed into G to produce the final image y∗.

3.1.1 Correlation analysis and perturbation in S space

Our method aims to diversify only age-dependent at-

tributes by adding perturbations to an age-transformed

latent code w. However, the W+ space latent code w

obtained using SAM [3] are highly entangled and dif-

ficult to use for perturbing specific attributes. There-

fore, we convert the W+ space latent code into the S
space [24] one. S space is more disentangled than W+

space and has the advantage of controlling an individual

and fine-grained attribute via single channel manipula-

tion.

In S space, we need to identify channels that manip-

ulate age-dependent attributes. We also identify chan-

nels that less affect a person’s identity to preserve the

identity during random manipulation. To do so, we an-

alyze the correlation between each channel in S space

and age or identity of the output image. Specifically,

we feed a randomly sampled {zn|zn ∈ Z}100n=1, where

Z is a latent space following a normal distribution, to

the mapping network and generator of the pre-trained

StyleGAN and convert them into {sn|sn ∈ S}100n=1. In-

spired by StyleCLIP [18], we then compute a vector

sn
′ = sn +αn∆sc by perturbing sn with ∆sc. The vec-

tor ∆sc contains the standard deviation at a channel c

and zero at the other channels. We preliminarily com-

pute the standard deviation of each channel from 1,000

randomly sampled latent code in S space. αn is a ran-

dom value from a uniform distribution u(−5, 5). For

the obtained latent codes sn and sn
′ before and after

Fig. 3: Histogram of the absolute correlation coeffi-

cients between the variations of S space channels and

the variations of the age or identity. The horizontal and

vertical axes indicate the absolute correlation coefficient

and frequency, respectively.

the perturbation, the variations of age and identity are

obtained as follows:

∆age,n = |A(G(sn
′))−A(G(sn))|, (1)

∆ID,n = 1− ⟨R(G(sn)), R(G(sn
′))⟩. (2)

Here, G(·) denotes the pre-trained StyleGAN [12] gen-

erator, A(·) denotes the pre-trained age classifier [21],

R(·) denotes the pre-trained ArcFace network [4], and

⟨·, ·⟩ denotes the inner product. We finally compute cor-

relation coefficients between α∆sc and ∆age or ∆ID.

Figure 3 shows the histograms of absolute corre-

lation coefficients for 6,048 channels except the tRGB

channels in S space. The histograms show that a few

hundred channels correlate with age or identity. We can
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also observe that channels correlated with identity are

fewer than those correlated with age. This is likely be-
cause identity is a complex metric controlled by multi-

ple attributes. In Figure 4, we further analyze how spe-

cific correlated channels affect the output appearance.

The scatter plots show that the 435th channel on the

9th layer (9 435) and the 155th channel on the 8th layer

(8 155) correlate with age and identity, respectively. In

the edited images, we can confirm that the 9 435 chan-

nel controls the amount and depth of wrinkles around

the eyes and mouth. The 8 155 channel controls the

height of the eyebrows that affect identity.

Driven by the above analysis, we use the obtained

correlation coefficients as weights for a random offset

o′random. We assign larger weights to the channels cor-

related with age and smaller weights to those correlated

with identity. Specifically, using the correlation coeffi-

cients σage
c and σID

c for age and identity in a channel

c, we compute a soft mask omask as follows:

omask,c =
σc −mink(σk)

maxk(σk)−mink(σk)
, (3)

σc = |σage
c |+ (1− |σID

c |), (4)

where omask,c is the value of omask for a channel c and

normalized to [0, 1]. Next, we perturb the latent code s

using the weighted offset o′random as follows:

sinit = s+ o′random, (5)

o′random = orandom ⊙ omask, (6)

where ⊙ denotes the element-wise product, and

orandom ∈ S is a latent code converted from randomly

sampled z ∈ Z using the pre-trained mapping network

and StyleGAN generator.

3.1.2 Latent code refinement via optimization

Although we can diversify age-dependent attributes by

latent code perturbation described in Section 3.1.1, this

procedure may cause some deviation from the target

age αtarget and the identity of the input image x. To

address this issue, we further optimize the diversified

latent code. Let s∗ be the diversified latent code to be

optimized, initialized with sinit. Note that we exclude

the tRGB channels from the optimized parameters be-

cause they control the overall hue and are not related

to age-dependent attributes.

For loss functions used for optimization, we first em-

ploy the L2 loss and LPIPS [25] loss between an orig-

inal age-transformed image y before perturbation and

the diversified image G(s∗):

L2(s
∗) = ∥y −G(s∗)∥2, (7)

BEFORE AFTER

9_435

0.674

8_155

−0.357

Fig. 4: Scatter plots for the variations of the specific S
space channels correlated with the variations of age or

identity (left). The upper right numbers in the scatter

plots show the manipulated channel indices and corre-

lation coefficients from top to bottom. As shown in the

right images, manipulating these channels affects age-

and identity- dependent attributes (e.g., depth of wrin-

kles and height of eybrows).

LLPIPS(s
∗) = ∥F (y)− F (G(s∗))∥2, (8)

where F (·) denotes the perceptual feature extractor.

These loss functions have a role to rectify identity drifts

caused by latent code perturbation. Note that, as dis-

cussed in Section 3.1.1, identity is a complex metric con-

trolled by multiple attributes, and our correlation anal-

ysis may not perfectly identify identity-related chan-

nels. Next, we use the identity loss LID between the

diversified and the original output images y for identity

preservation:

LID(s∗) = 1− ⟨R(y), R(G(s∗))⟩. (9)

Note that there might be an alternative loss between

the diversified image G(s∗) and the input image x in-

stead of y. However, this loss function did not work

because it made the optimization unstable due to the

large difference of their appearance. Finally, we intro-

duce the aging loss for target age preservation:

Lage(s
∗) = |αtarget −A(G(s∗))|, (10)

where A(·) denotes the pre-trained age classifier [21].

The final objective function is defined as follows:

L(s∗) = λl2 L2(s
∗) + λlpips LLPIPS(s

∗)

+ λid LID(s∗) + λage Lage(s
∗),

(11)

where λl2, λlpips, λid, and λage are the weights for each

loss function. We empirically determined these weights

as λl2 = 0.01, λlpips = 0.01, λid = 0.1, and λage = 5.
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3.2 Latent path extrapolation via guided optimization

As explained in Section 1, the recent age transformation

methods [3,7] can use an arbitrary target age as input

but struggle to accurately estimate age transformation

to childhood due to the dataset bias. A näıve remedy

would be to optimize latent codes to reach the target

age, but we found it also struggles bad local minima

(Section 4.3). To solve this problem, we present an un-

supervised approach for latent path extrapolation via

guided optimization.

To extrapolate toward the younger direction, we

first define a latent path by sampling multiple la-

tent codes. Specifically, we sample four latent codes

{sk}3k=0 ⊂ S by feeding corresponding age targets

{αk}3k=0 to SAM encoder E. We select {αk} at three-

year intervals from a target age αtarget (= α0) backward

toward the older direction, which is more reliable than

the younger direction. For example, for αtarget = 5, we
sample {αk} = {5, 8, 11, 14}. The latent path is then

defined by the four samples {sk} and an interpolation

function f . If function f is a linear interpolator, i.e.,

f(α, k) = sk +
α− αk

αk+1 − αk
(sk+1 − sk), (12)

the latent path is then a polyline (the blue polyline in

Figure 5). We extrapolate the latent path for younger

ages α < αtarget by f(α, 0) (the orange line with

“Ours 5” in Figure 5). For function f , we compared

several candidates, such as quadratic and cubic Hermite

interpolation, and found that the simple linear inter-

polator works best among our candidates. Section 4.3

explains the details.

Next, we manipulate the latent code along the ex-

trapolated latent path so that the output image reaches

the target age αtarget via an iterative search. We refer

to this technique as guided optimization. Let α̂t be the

input age value at iteration t and α̂0 = αtarget. The it-

eration terminates when the following condition is met:

|At − αtarget| < β, (13)

where At denotes A(G(f(α̂t, 0))) for simplicity, and β =

0.5 represents a tolerance parameter. We update α̂t in

each iteration as follows:

α̂t+1 ← α̂t +∆mt, (14)

where ∆mt is the step size of αt defined as:

∆mt=


−1 if t = 0 and At ≥ αtarget,

1 if t = 0 and At < αtarget,

−∆mt−1

2 if (At−1−αtarget)(At−αtarget) < 0,

∆mt−1 otherwise.

Input Image

Guided Optimization

Estimated: 21 Estimated: 5 

Fig. 5: Overview of our latent path extrapolation via

guided optimization. The latent codes sampled using

SAM (labeled as SAM k, where k denotes the target

age) define a latent path (blue polyline). SAM’s output

face for the age of five (i.e., SAM 5) looks older than

five, so we optimize the latent code Ours 5 along the

extrapolated path (orange line) until the estimated age

of the generated face reaches the target age. We employ

PCA projection of latent codes for 2D visualization.

(15)

This equation means moving the latent code on the ex-

trapolated path toward the target age direction. If the

estimated age At passes through the target age αtarget,

we move the latent code the half distance at the pre-

vious step in the opposite direction. To deal with the

case where this iterative update does not converge, we

set the maximum iteration number T = 100.

4 Experiments

4.1 Implementation details

We implemented our method using PyTorch and ran

our program on NVIDIA RTX A4000. For latent code

optimization, we used Adam [13] with a learning rate of

0.01 and set the parameters β, ϵ, and the weight decay

as (0.9, 0.999), 1e-8, and 0, respectively. We stopped

the optimization when the change in the loss was less

than 0.0001 in 7 consecutive steps. The computation

time was about 37 seconds for multimodal age trans-

formation and 3 seconds for latent path extrapolation.

4.2 Evaluation of multimodal age transformation

Comparisons with existing methods. In this experi-

ment, we created 10 diverse output images from each

of 100 CelebA-HQ [15] test images and random tar-

get ages. We evaluated the result images using three

metrics: diversity, identity preservation, and target age
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Table 1: Quantitative comparison of diversification

with SAM [3], CUSP [7], and our method. Boldface

indicates the best score for each metric.

Method LPIPS ↑ ID ↓ AGE SD ↓
SAM 0.0495 0.355 4.20
CUSP 0.0220 0.165 3.09
Ours 0.0503 0.0164 2.84

preservation. For the diversity score, we take pairs of 10

diversified images generated from each input image and

compute the average of LPIPS [25] values for all pairs.

The identity preservation score (ID) is the average of

ArcFace [4] values for all pairs. The age preservation

score (AGE SD) is the average of the standard devia-

tions of ages estimated from sets of diversified images.

For fair evaluation of estimated ages, we did not use

the age classifier [21] (used for optimization) but used

Face++ [9], which is a Web API service for face recog-

nition. We masked background regions using a semantic

face parser [1] to exclude them from evaluation. Table 1

shows the quantitative comparison. To obtain diverse

results for SAM [3], we performed style mixing on 8th

and 9th layers as described in the paper. In the case

of CUSP [7], the variances σm and σg of Gaussian ker-

nels were sampled randomly. The results show that our

method outperforms the other methods in all metrics.

Figure 6 shows the qualitative comparison. The

results of SAM using style mixing show changes in

eye color, skin color, lighting, and other attributes,

which are unrelated to aging, and some results devi-

ate from the target age. The results of CUSP show
poor identity preservation due to changes in nose and

eye shape, and some outputs appear unnatural. In con-

trast, our method diversifies mainly age-dependent at-

tributes. For example, as shown in the red rectangles,

we can see that the number of wrinkles differs around

the eyes and mouths, hair color fades differently, and
facial shapes vary around the chins. Hair volume varia-

tions (i.e., receding hairlines of the man and hair length

changes of the woman) are also possible changes with

age variations.

Ablation study. We evaluated the effectiveness of our

optimization process for refining diversified latent

codes. Table 2 shows the quantitative comparison be-

tween our multimodal age transformation methods with

and without optimization. The results demonstrate

that the optimization somewhat decreases the LPIPS

score for diversity but significantly improves the ID and

AGE SD scores, which are essential to preserving the

identity and target age.

Table 2: Quantitative comparison between our meth-

ods with and without optimization after diversification.

Settings LPIPS ↑ ID ↓ AGE SD ↓
w/o optimization 0.0706 0.217 5.49
w/ optimization 0.0503 0.0164 2.84

Table 3: Quantitative comparison with our diversifi-

cation methods using W+ space or S space.

Method LPIPS ↑ ID ↓ AGE SD ↓
Ours (W+ space) 0.0351 0.253 2.89
Ours (S space) 0.0503 0.0164 2.84

Comparisons between S and W+ spaces. We evaluated

the effectiveness of using S space in our method. For

comparison, we attempted multimodal age transforma-

tion in W+ space [2]. The overall flow using W+ space

is similar to our method using S space. However, in-

stead of weighted offsets, we used randomly sampled

W+ latent codes for perturbation because W+ space

is not disentangled for each channel, and thus our corre-

lation analysis cannot be applied. Let w∗, winit ∈ W+

be the diviersified latent code and its initial value in

W+ space, similar to s∗, sinit defined in Section 3.1.1.

For latent code optimization inW+ space, we introduce

a regularization loss Lreg in addition to our losses.

L(w∗) = λl2 L2(w
∗) + λlpips LLPIPS(w

∗)

+ λid LID(w∗) + λage Lage(w
∗)

+ λreg Lreg(w
∗).

(16)

The regularization loss Lreg encourages a latent code

to approach the average latent code and improves im-

age quality by removing undesirable artifacts. Note that

we did not use Lreg in S space because we found that
this loss tends to produce artifacts. For the weight of

each loss, we empirically set λl2 = 1, λlpips = 0.1, λid =

0.1, λage = 5, and λreg = 0.005. We stopped optimiza-

tion if the loss function value becomes less than 0.5.

Table 3 shows the quantitative results. Compared

with SAM using style mixing in Table 1, Ours (W+

space) improves the ID and AGE SD scores but de-

creases the LPIPS score for diversity. In contrast, Ours

(S space) shows the best LPIPS and ID scores while ob-

taining the AGE SD score comparable with Ours (W+

space).

Figure 7 shows the qualitative results. In the re-

sults ofW+, the image quality is relatively low. This is

probably because latent codes are perturbed with equal
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Fig. 6: Qualitative comparison of diversifying age-dependent attributes with the existing methods and our method.
We created five different outputs for each person specifying the target age of 65.

weights for all channels and deviate from the real distri-

bution in W+ space. In addition, manipulation in W+

space changes not only age-dependent attributes but

also identity. In contrast, our method using S+ space

diversifies the results while preserving age and identity

thanks to our correlation analysis approach.

4.3 Evaluation of latent path extrapolation

Comparisons with existing methods. To evaluate the ef-

fectiveness of our latent path extrapolation for young

age, we conducted a quantitative evaluation for the tar-

get ages of 3-19 using 2,000 test images from CelebA-

HQ [15] as input. As evaluation metrics, we used

AGE MAE for age transformation accuracy and FID [8]

for image quality. AGE MAE is the average absolute

difference between the estimated age and the target age
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W+ space and S space.

Table 4: Quantitative comparison of age transforma-

tion to childhood with SAM and our method.

Target Age Method FID ↓ AGE MAE ↓

5
SAM 149.1 17.7
Ours 109.3 7.75

8
SAM 119.0 15.5
Ours 113.0 13.9

12
SAM 110.4 12.6
Ours 109.3 11.6

17
SAM 100.7 10.8
Ours 101.3 7.09

for each output image. We used Face++ [9] for age esti-

mation. As a ground-truth dataset for computing FID,

we used FFHQ-Aging [16] images belonging to the 3-6,

7-9, 10-14, and 15-19 age groups. Using SAM and our

method, we performed age transformation by specifying

the target ages of 5, 8, 12, and 17, which are the me-

dian values of age groups. We then computed the FID

scores between generated images and ground-truth im-

ages corresponding to specified age groups. Note that

we did not use CUSP [7] for comparison because the

public model (trained with FFHQ-RR) for specifying

the arbitrary target age cannot handle ages less than

20.

As shown in Table 4, our method provides better

FID and AGE MAE at the target ages of 5, 8, and 12.

For the target age of 17, the FID score of our method

is comparable to SAM, but our method is significantly

better than SAM in the AGE MAE score. These results

indicate that our method outperforms SAM when the

target age is younger.

Figure 8 shows the qualitative comparison of age

transformation to the target age of 5. We can confirm

that the outputs of our method are closer to the target

age compared with SAM. In particular, our method can

make the eyes larger and the mouth smaller and change

the facial contours. Other qualitative results are shown

in Appendix A.

Table 5: Quantitative comparison of age transforma-

tion to childhood via our guided optimization for latent

path extraporation or a näıve optimization.

Target Age Method FID ↓ AGE MAE ↓

5
näıve opt. 124.9 14.7
guided opt. 109.3 7.75

8
näıve opt. 112.8 14.5
guided opt. 113.0 13.9

12
näıve opt. 107.4 11.4
guided opt. 109.3 11.6

17
näıve opt. 98.25 7.20
guided opt. 101.3 7.09

Input SAM Guided opt. (ours)

Estimated: 19 Estimated: 5

Estimated: 19 Estimated: 6

Estimated: 14 Estimated: 5Estimated: 7

Estimated: 19

Estimated: 12

Naïve opt.

Fig. 8: Qualitative comparison of age transformation

to childhood (target age of 5).

Ablation study. We also compared our method with a

näıve optimization that does not use guidance by la-

tent path extrapolation. Specifically, we näıvely mini-

mize the age preservation loss in Equation (10) without

restricting the moving direction of optimized codes. In

Table 5, this optimization method (näıve opt.) is quan-

titatively comparable with our method (guided opt.) in

the target ages of 8, 12, and 17, whereas it shows sig-

nificantly lower performance in the target age of 5.

In Figure 8, the näıve optimization only yields quali-

tatively subtle changes from SAM because of falling into

undesirable local minima. In contrast, our guided op-

timization appropriately represents the characteristics

of five-year-olds (e.g., pupil proportion, cheek redness,

and dentition) by estimating desired latent directions.

Comparisons with other extrapolation methods. We

evaluated the validity of using linear extrapolation for

latent path extrapolation. Specifically, we performed

age transformation to the target age of 5 for 2,000 test

images in CelebA-HQ. As an evaluation metric, we used
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Table 6: Quantitative comparison with various extrap-

olation methods.

Method Success Rate ↑ FID ↓
linear (Ours) 1.00 109.3
barycentric 0.487 175.8
Krogh 0.487 175.8
quadratic 0.495 188.7
cubic 0.487 175.8
Akima 0.683 138.0
PCHIP 0.145 244.6

success rates besides FID. We define success rate as the

ratio of images that reach the target age during iter-

ative update. In addition to linear extrapolation, we

tried barycentric, Krogh, quadratic spline, cubic spline,

Akima, and piecewise cubic Hermite (PCHIP) extrapo-

lation methods. Table 6 shows the quantitative compar-

ison with various extrapolation methods. We can con-

firm that linear extrapolation shows the best success

rate and FID score.

Figure 9 shows qualitative results. The results in

the first row are relatively good for all extrapolation

methods except PCHIP. For the other results, however,

all methods except linear extrapolation are unstable,

and some images collapse. Linear extrapolation is the

most stable and produces the highest quality images.

This is probably because the latent path is partially

linear in the lower age intervals. Further analysis in the

latent space is left for future research.

5 Conclusion

In this paper, we proposed a multimodal facial age

transformation method to diversify age-transformed fa-

cial images while preserving the target age and identity.

Through analysis of S space [24], we compute a correla-

tion between each S space channel and age or identity.

We diversify age-dependent attributes (e.g., wrinkles

and hair) by latent code perturbation using the cor-

relation coefficients as weights of random offsets. Our

method refines the perturbed latent codes to improve

the age and identity of the output images. In addition,

we proposed an unsupervised latent path extrapolation

method to improve the accuracy of age transformation

to childhood. We extrapolate a latent path obtained

from latent codes sampled around a target age. We then

obtain new latent codes for the target age via iterative

search along the extrapolated path. Evaluation experi-

ments demonstrate that our method quantitatively and

qualitatively outperforms the existing methods in diver-

sity and accuracy.

Limitations and future work. For output diversifica-

tion, our method relies on randomness. In some cases,
the user may not obtain desired results that are suffi-

ciently diversified. In addition, as shown in the left of

Figure 10, our latent code perturbation based on cor-

relation analysis is not perfect and sometimes changes

gender and face orientation besides age-dependent at-

tributes. In the future, we would like to mitigate this

problem by incorporating additional losses for pre-

serving such attributes into latent code optimization.

Furthermore, our latent path extrapolation may pro-

duce collapsed images when the target age is extremely

young (see the right in Figure 10). Our method may

fail when we move the latent code too far away from its

initial position. Future work is to develop more effective

latent space exploration methods.

Data Availability Statement

Our source code is available at https://github.com/

shiiiijp/ADFD.
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A Additional Qualitative Comparisons

Figure 11 shows the additional qualitative comparisons with
SAM [3], CUSP [7], and our method. For diversification, the
results of the existing methods often show changes in not
only identity but also lighting and background, which are
unrelated to age, while our method diversifies age-dependent
attributes. Our method also performs age transformation to
childhood better than SAM.



12

A
g
e
-D

e
p
e

n
d

e
n
t 
A

tt
ri
b

u
te

 D
iv

e
rs

if
ic

a
ti
o
n

In
p

u
t

OursSAM CUSPOursSAM CUSP

OursSAM CUSPOursSAM CUSP

OursSAM CUSP

OursSAM CUSP

A
g

e
-D

e
p
e

n
d

e
n

t 
A

tt
ri
b

u
te

 D
iv

e
rs

if
ic

a
ti
o

n
In

p
u

t
In

p
u

t
S

A
M

O
u

rs

Estimated: 3 Estimated: 6 Estimated: 6 Estimated: 7 Estimated: 5 Estimated: 3

Estimated: 13 Estimated: 21 Estimated: 18 Estimated: 18 Estimated: 21 Estimated: 20 Estimated Age: 19

Estimated: 4 Estimated: 6

Estimated: 19 Estimated: 6

Estimated: 6

Estimated: 12

Fig. 11: Additional qualitative comparisons with SAM [3], CUSP [7], and our method for diversification (top and

middle) and accuracy (bottom). The target ages are 65 for diversification and 5 for accuracy, respectively.


