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Fig. 1: Our method can synthesize photorealistic images from rough semantic scribbles using a single training pair

and a pre-trained StyleGAN model.

Abstract This paper tackles the challenging prob-

lem of one-shot semantic image synthesis from rough

sparse annotations, which we call “semantic scribbles.”

Namely, from only a single training pair annotated

with semantic scribbles, we generate realistic and di-

verse images with layout control over, e.g., facial part

layouts and body poses. We present a training strat-

egy that performs pseudo labeling for semantic scrib-

bles using the StyleGAN prior. Our key idea is to con-

struct a simple mapping between StyleGAN features

and each semantic class from a single example of se-

mantic scribbles. With such mappings, we can gener-

ate an unlimited number of pseudo semantic scribbles

from random noise to train an encoder for controlling a

pre-trained StyleGAN generator. Even with our rough

pseudo semantic scribbles obtained via one-shot super-

vision, our method can synthesize high-quality images

thanks to our GAN inversion framework. We further

offer optimization-based post-processing to refine the

pixel alignment of synthesized images. Qualitative and

quantitative results on various datasets demonstrate

improvement over previous approaches in one-shot set-

tings.

Keywords Generative adversarial networks · Image

editing · GAN inversion

1 Introduction

Recent advances in generative adversarial networks

(GANs) have enabled us to easily create realistic and

diverse images [5,18,19]. This success, in turn, has en-

couraged researchers to find how to control GANs’ out-

puts [8,14,29,30,37]. They have analyzed the latent

space of GANs to reveal the effect of latent code ma-

nipulation on output images. Through the disentan-

gled latent space, users can control various attributes
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(e.g., face orientation, mouth shape, and hair color) in

the output images. However, attribute manipulation is
not necessarily intuitive against, in particular, layout-

related attributes (e.g., facial part layout and body

pose), which we focus on in this paper.

Layout control in image synthesis is possible with

image-to-image (I2I) translation [13], where layouts are

specified with semantic masks or sketches. A draw-

back is that most existing techniques require substan-

tial training data in source and target domains for high-

quality outputs. Even worse, fine-grained annotations

of pixel-wise labels in both training and testing times

are quite costly. Although some public datasets like

those for human faces may be sufficient to train I2I

models, various datasets in other domains such as for

animals and cartoons are not well organized.

In this paper, we present the first method for con-

trolling GANs’ outputs via one-shot learning in a one

using rough sparse annotations as input. We term these

input annotations “semantic scribbles,” and they can be

used to specify output layouts with sparse annotations

like brush strokes for body parts and cross lines for the

face. Imagine that you have a large dataset of unlabeled

images, but only a single annotated pair is available

(see Figure 1). In this scenario, we would utilize Style-

GAN [18,19], pre-trained using the unlabeled dataset.

Namely, we would achieve high-quality image synthesis

by exploring StyleGAN’s latent space via GAN inver-

sion [38]. What is challenging here is that, although

common GAN inversion techniques [1,2] assume that

test inputs belong to the same domain as a GAN’s

training data (e.g., facial photographs), our test and

training data are in different domains, i.e., semantic

layouts and photographs. How to invert the input in a

different domain into a GAN’s latent space is an open

question, especially in a one-shot scenario.

To bridge the domain gaps, we construct a mapping

between the semantics predefined in the one-shot exam-
ple and StyleGAN’s latent space. Inspired by the fact

that pixels with the same semantics tend to have sim-

ilar StyleGAN features [9], we generate pseudo seman-

tic scribbles from random noise in StyleGAN’s latent

space via simple nearest-neighbor matching. This way,

we can draw an unlimited number of training pairs by

only feeding random noise to a pre-trained StyleGAN

generator. After integrating an encoder on top of a fixed

StyleGAN generator, we then train the encoder for con-

trolling the generator using the pseudo-labeled data

in a supervised fashion. We further offer optimization-

based post-processing to refine the pixel alignment of

synthesized images. Our approach integrates semantic

layout control into pre-trained StyleGAN models pub-

licly available on the Web [25], via pseudo labeling even

from a single annotated pair.
In summary, our major contributions are as follows:

– We explore a novel problem of controlling GANs’

outputs using semantic scribbles in a one-shot set-

ting, where users can synthesize high-quality, vari-

ous images in target domains even from a single and

rough semantic layout provided during training.

– We propose a simple yet effective framework for

training a StyleGAN encoder for scribble-based im-

age synthesis in a one-shot scenario, via pseudo sam-

pling and labeling based on the StyleGAN prior.

– We propose a post-processing method, which is

optimization-based GAN inversion that refines our

encoder-based results.

As demonstrated in Figure 1 and the experiments in

Section 4, our method is the first to control StyleGAN

in a one-shot scenario using semantic scribbles, which

can handle various layouts such as complicated poses

as well as face orientation.

2 Related Work

This section introduces related work for latent space

manipulation and image-to-image translation. We also

discuss one- or few-shot approaches for controlling

GANs.

2.1 Latent space manipulation

Recent techniques attempt to manipulate disentangled

latent spaces of pre-trained GANs for image editing.
Here, we briefly introduce some of them; please refer

to a survey paper [38] for more information. A typical

choice for pre-trained GANs is StyleGAN [18,19], which

enables coarse-to-fine editing using multiple layer-wise

latent codes. Chiu et al. developed a framework that

allows users to search 1D subspaces for efficient user
exploration from a high-dimensional latent space [8].

Jahanian et al. computed trajectories in a latent space

for simple image transformations in a self-supervised

manner [14]. InterFaceGAN [29] can control the pose

and expression of faces by finding semantic bound-

aries via the training of a linear SVM. Shen et al. and

Härkönen et al. found interpretable paths in a latent

space through closed-form analysis [30] and principal

components analysis (PCA) [12]. Although these meth-

ods enable image editing via operation in a latent space,

users cannot directly control output layouts.

Image2StyleGAN [1,2] is a GAN inversion method

that can control GANs’ outputs by inverting given im-

ages into latent space via optimization. Roich et al. [27]
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proposed a technique that not only optimizes latent

codes but also tunes a generator to improve editability
of inverted real images. However, inverting semantic

layouts into a latent space defined by photographs is

not straightforward because how to measure the dis-

crepancy between the two different domains (i.e., se-

mantic scribbles and photographs) is an open ques-

tion, especially in a one-shot scenario [38]. Recently, the

Pixel2Style2Pixel (pSp) [26] encoder has enabled GAN

inversion without optimization for test inputs. Because

this method does not need to compute losses between

inputs and a GAN’s outputs, it can also handle seman-

tic layouts as input. To improve editability for the

encoder-based approach, Tov et al. [34] introduced reg-

ularization and adversarial losses for latent codes into

encoder training. In addition, Alaluf et al. [3] proposed

a method that improves reconstruction quality of in-

verted images by iteratively refining latent codes from

the encoder. However, the encoder-based approach re-

quires many training pairs to improve the generalizabil-

ity of the encoder, as demonstrated in Section 4.

2.2 Image-to-image translation

There are various I2I translation methods suitable for

interactive image synthesis using semantic layouts as in-

put; the goals are, e.g., to improve image quality [13,6,

23,24,33,32], generate multi-modal outputs [24,21,45,

10,41], and simplify input annotations using bounding

boxes [44,31,22]. There are also image synthesis meth-

ods using sketch and color scribbles as input [28,15].

However, these methods require a large amount of train-

ing data for both source and target domains and thus
are unsuitable for our one-shot scenario. Moreover, al-

though fine-grained annotations allow us to specify fine

details, the annotation cost is very high. Meanwhile,

our focus is on roughly specifying the layouts of GANs’

outputs using semantic scribbles.

There are also methods that use sketches as input
instead of semantic masks [39]. SketchyGAN [7] is a

variant of GANs that can generate images for various

classes from freehand sketches. SketchyCOCO [11] en-

abled image generation for more complicated scenes.

While these methods require a large amount of paired

data for training the networks, Wang et al. [36] pro-

posed a method that can generate diverse images by

learning a small number of sketches. However, this

method is not suitable for interactive editing because

it requires re-training the model for about 30K itera-

tions every time the test input changes. Our method

enables interactive synthesis for various test inputs af-

ter training our model. It can also handle novel and

arbitrary annotations such as cross lines.
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Fig. 2: Training iteration of the StyleGAN encoder. We

first generate images from noise vectors via the mapping

network and the StyleGAN generator. We then com-

pute pseudo semantic scribbles using class-wise feature

vectors. We train the encoder based on L2 loss between

latent codes.

2.3 One-/Few-shot GAN control

To the best of our knowledge, there is no other one-shot

method dedicated to controlling GANs’ outputs us-

ing semantic layouts. Meanwhile, several few-shot tech-

niques were proposed recently. DatasetGAN [43] and

RepurposeGAN [35] demonstrated high-quality seman-

tic segmentation by leveraging pre-trained StyleGAN

models and a few annotations. They use feature maps

from the hidden layers of StyleGAN to learn segmenta-

tion models. However, they are not suited for the class-

imbalanced setting in our one-shot scenario, where only

sparse sets of pixels are labeled with scribbles. Seman-

ticGAN [20] trains GANs that generate both images

and semantic masks using many unlabeled images and

dozens of segmentation maps. Although this method

can generate high-quality segmentation maps for out-

of-domain images, it does not work well if we have only

one-shot scribbles for training. Therefore, these tech-

niques are not suitable to replace our pseudo labeling

in our framework, as demonstrated in Section 4.
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3 Method

Our goal is to accomplish scribble-based image synthe-

sis via training with Nu unlabeled images and a single

labeled image both in the same target domain. A sin-

gle training pair consists of one-hot semantic scribbles

x ∈ {0, 1}C×W×H (where C, W , and H are the num-

ber of classes, width, and height) and its ground-truth

(GT) RGB image y ∈ R3×W×H . Each scribble has a

unique class label, whereas unoccupied pixels have an

“unknown” class label. Hereafter, we denote the labeled

dataset as Dl = {x,y} and the unlabeled dataset as

Du = {yj}Nu
j=1.

The core of our method is to find appropriate map-

pings between semantics defined by a single labeled pair

Dl and StyleGAN’s latent space defined by an unla-

beled dataset Du. Our StyleGAN encoder learns the

mappings to extract latent codes from semantic scrib-

bles. The overall training procedure (Figure 2 and Sub-

section 3.2) involves iterating three steps; (i) first, we

randomly sample images from a StyleGAN generator

pre-trained with Du, (ii) then perform pseudo label-

ing with Dl for the sampled images, and (iii) update

the StyleGAN encoder parameters. In pseudo labeling

(Subsection 3.1), we first extract feature vectors rep-

resenting each semantic class and then find matchings

with StyleGAN’s feature maps. Such matchings enable

pseudo labeling, i.e., to obtain pseudo semantic scribbles

from random noise in StyleGAN’s latent space, which

are then used to train an encoder to extract latent codes

for controlling the pre-trained StyleGAN generator.

For inference, we extract latent codes from test in-

puts using the StyleGAN encoder and generate images

by feeding the latent codes to the StyleGAN genera-

tor. As the StyleGAN encoder, we adopt the pSp en-

coder [26]. The inference process is the same as that

of pSp; from semantic scribbles, the encoder generates

latent codes that are then fed to the fixed StyleGAN

generator to control the spatial layout. We can option-

ally change or fix latent codes that control the local

details of the output images. In addition, we can re-

fine the generated results via optimization-based GAN

inversion in a post-processing stage (Subsection 3.3).

Note that näıvely training the pSp encoder with a sin-

gle ground-truth pair cannot generalize the mapping

function between various semantic scribbles and latent

codes (see the results in Section 4). Hereafter, we ex-

plain the pseudo labeling process, the training proce-

dure with the pseudo semantic scribbles, and the post-

processing stage.
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Fig. 3: Pipeline of pseudo labeling. Left: We extract

class-wise feature vectors for all labeled pixels. Right:

For each feature vector, we take top-k correspondences

and assign its class label to corresponding pixels whose

similarities are above threshold t.

3.1 Pseudo labeling

Figure 3 illustrates the pseudo labeling process for se-

mantic scribbles. As explained at the beginning of Sec-

tion 3, each semantic scribble has a unique class la-

bel, and unoccupied pixels have an “unknown” label.

To obtain pseudo semantic scribbles, we first extract

class-wise feature vectors corresponding to class labels

except for the “unknown” label. We then find match-

ings between the feature vectors and pixels in images

newly sampled from StyleGAN.

Specifically, we extract StyleGAN’s feature maps

F ∈ RZ×W ′×H′
(where Z, W ′, and H ′ are the number

of channels, width, and height) corresponding to the

semantic scribbles x. There are two ways to prepare

the feature maps F. If a pair of semantic scribbles x

and GT RGB image y is available in Dl, we first invert

y into the StyleGAN’s latent space via optimization-

based GAN inversion using the L2 and LPIPS [42] losses

between y and the StyleGAN output. We then extract

the feature map via forward propagation. Alternatively,

we feed one noise vector to the pre-trained StyleGAN

generator, extract the feature map and synthesized im-

age, and manually annotate the synthesized image to

create semantic scribbles. In all of our results, the fea-

ture map F is at a resolution of 64 × 64 and extracted

from the layer closest to the output layer of the Style-

GAN generator. We set the resolution to 64 × 64 by

reference to Collins et al. [9]; they used 32× 32 feature

maps to get “most semantic” clusters, but we want to

obtain modestly high-resolution pseudo semantic scrib-

bles to train the encoder.

After obtaining StyleGAN’s feature map F, we ex-

tract class-wise feature vectors {f cj }
Nc
j=1 for semantic

scribbles x′ ∈ {0, 1}C×W ′×H′
(where x′ is a downsam-

pled version of x at the same spatial resolution as F,
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Fig. 4: Matching between class-wise feature vectors and

a feature map. The solid and dashed arrows are first

and second matchings, respectively, and numbers near

arrows show cosine similarity. Nearest-neighbor match-

ing may result in fewer samples in pseudo labeling than

in genuine ones due to many-to-one mapping like cell

A.K-nearest-neighbor matching can avoid this problem

by increasing matchings with cells like B. In addition,

if feature vectors with different classes match same cell

like C, we assign class label with highest similarity (i.e.,

class 2 in this case).

and Nc is the number of pixels annotated with class c in

x′). Meanwhile, we randomly sample images from the

pre-trained StyleGAN model and extract their feature

maps from the hidden layers. Next, we take the cor-

respondence between each class-wise feature vector f cj
and the pixels in these feature maps. For pseudo seman-

tic scribbles, we want to retain spatial sparsity so that

the pseudo semantic scribbles resemble genuine ones as

much as possible. However, many annotated pixels in x′

might match an identical pixel-wise vector in the fea-

ture maps (i.e., many-to-one mapping), which results

in fewer samples in pseudo semantic scribbles (see Fig-

ure 4). Therefore, we calculate the top-k (i.e., k-nearest-
neighbor) matching instead of one-nearest-neighbor to

increase matchings. In the case of many-to-one map-

pings from different classes, we assign the class label of

an annotation that has the largest cosine similarity. To

avoid outliers, we discard the matchings if their cosine

similarities are lower than a threshold t and assign the
“unknown” label. Figure 5 shows examples of pseudo

semantic scribbles with different parameters. We set

k = 3 and t = 0.5 for all results in this paper.

3.2 Training procedure

Figure 2 and Algorithm 1 summarize the learning pro-

cess of the StyleGAN encoder. After preparing a

pre-trained StyleGAN and class-wise feature vectors

as mentioned in Subsection 3.1, we iteratively train

the StyleGAN encoder. Specifically, we sample random

noise z from a normal distribution N (0, I) and feed it to

the StyleGAN’s mapping network M to obtain latent

One-shot 
Training Pair
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t 
=

 0
.1

t 
=

 0
.3

t 
=

 0
.5

t 
=

 0
.7

t 
=

 0
.9

StyleGAN Sample Pseudo-labeled Results

Fig. 5: Our pseudo-labeled results with different param-

eters. We set k = 3 and t = 0.5 (highlighted in red) for
all results.

Algorithm 1 One-shot learning of StyleGAN encoder

Input: A labeled set Dl and unlabeled set Du

Train StyleGAN using Du

Compute class-wise feature vectors using Dl

for each training iteration do
Sample latent codes according to N (0, I)
Feed the latent codes to the generator
Perform pseudo labeling using class-wise feature vectors
Feed the pseudo semantic scribbles to the encoder
Compute the loss L as in Eq. (1)
Compute the gradient and optimize the encoder

end for

codes w. Next, we feed the latent codes to the pre-

trained StyleGAN generator to synthesize images while

extracting the intermediate layer’s feature maps. Using

these feature maps and the class-wise feature vectors,

we create pseudo semantic scribbles, which are then fed

to the encoder to extract latent codes {ŵi}Li=1 (L is the

number of StyleGAN layers to input latent codes). In

the backward pass, we optimize the encoder using the

following loss function:

L = Ew∼M(z)Σ
L
i=1∥ŵi −w∥22. (1)

This loss function indicates that our training is quite

simple because backpropagation does not go through

the pre-trained StyleGAN generator and does not re-

quire hyperparameter tuning.

3.3 Post-processing via optimization

In general, encoder-based GAN inversion is fast but

not so accurate in reconstructing images [38] (see Fig-
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Fig. 6: Post-processed results (a) without and (b) with latent code initialization via our encoder.
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Fig. 7: Comparison with different post-processing meth-

ods. We first obtain the result (b) from the input image

(a) via our encoder-based approach. (c) and (d) show

the post-processed results of (b) using Equations (2)

and (4).

ure 7(a)(b)). Therefore, in this section, we propose an

optimization-based post-processing to further refine our

encoder-based outputs. Inspired by the knowledge that

StyleGAN features form semantic clusters using spheri-

cal k-means clustering [9], we formulate an optimization

procedure such that feature vectors in the same class

will become similar in the cosine distance. Specifically,

we aim to find a latent code w∗ in the W latent space1,

following the objective function of k-means clustering:

w∗ = argminŵD(f(ŵ),CX′
test), (2)

where the function f outputs a flattened StyleGAN fea-

ture map (i.e., Z ×W ′H ′ matrix) from the latent code

ŵ, C ∈ RZ×C is a matrix consisting of C cluster cen-

ters in Z dimensions, X′
test ∈ RC×W ′H′

is a matrix

obtained by flattening the resized test semantic scrib-

bles x′
test ∈ {0, 1}C×W ′×H′

, and D is the mean of nega-

tive cosine similarities between corresponding columns

of two input matrices. In the function f , we feed the

latent code ŵ to be optimized to the first eight lay-

ers in StyleGAN because latent codes fed to the lat-

ter layers affect fine-scale attributes rather than lay-

1 We can also optimize latent codes in the W+ latent
space [1], but we chose the W latent space because it can
obtain stable results.

out. Meanwhile, we feed fixed latent codes (e.g., en-

coder outputs) to the latter layers and exclude them

from gradient computation. For the cluster centers C,

we can define C = (v1,v2, ...,vC), where vc for class
c is computed with the feature map F and the resized

training semantic scribbles x′ as follows:

vc =

∑
x,y F

(x,y)1l
[
x

′(c,x,y) = 1
]

∑
x,y 1l

[
x′(c,x,y) = 1

] , (3)

where (x, y) denote pixel positions, and 1l [·] is an in-

dicator function that returns 1 if the argument is true

and 0 otherwise. To avoid falling into undesirable lo-

cal minima in Equation (2), we initialize ŵ with the

encoder output ŵ0 before optimization.

However, if we näıvely compute Equation (2), the

pixels in each cluster will have the same feature vectors,

converging to an almost flat-color image, as shown in

Figure 7(c). Inspired by GANSpace [12], we solve this

problem by restricting the latent code exploration to

certain principal directions. This restriction prevents

the latent codes from deviating significantly from the

actual data distribution. Specifically, we aim to find

a parameter vector g∗ ∈ RZ to obtain the latent code

w∗ = Wg∗ by using principal components in the latent

space. Here,W is a Z×Z matrix consisting of basis vec-

tors, sorted in the ascending order of their correspond-

ing eigenvalues. We first initialize g∗ with W−1ŵ0 (ŵ0

is the encoder output) and then optimize a part of g∗

as follows:

g∗
s:t = argminĝs:t

D(f(Wĝ),CX′
test), (4)

where ĝ is a parameter vector initialized similar to g∗.

The subscript s : t denotes a vector’s elements from s-

th to t-th, and we set s = Z − 8 and t = Z. Namely,

we optimize the latent code only in the principle di-

rections corresponding to the largest eight eigenvalues.

Note that the “unknown” region is excluded from the
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Fig. 8: Comparison of the cat images generated using the semantic scribbles in one-shot setting.

loss calculation. Figure 7(d) shows the result obtained

by decoding the latent code Wg∗.

Note that, because Equation (4) has local optimal

solutions, the result depends on the initial value. De-

pending on the initial value of ĝ, converged results may

deviate from the layout of the input mask, as shown

in Figure 6(a). Therefore, we can see that optimizing

Equation (4) without appropriate initialization is insuf-

ficient and the latent code initialization by our encoder

is essential, as shown in Figure 6(b).

4 Experiments

We conducted experiments to validate the effectiveness

of our method. We first explain implementation details

of our method and then show results and discuss them.

4.1 Implementation details

We implemented our method with PyTorch and ran

our code on PCs equipped with GeForce GTX 1080

Ti. We used public StyleGAN2 models [25,19] pre-

trained with unlabeled images. We trained the encoder

using the Ranger optimizer [26] with a learning rate

of 0.0001. The batch size (i.e., the number of pseudo-

labeled images per iteration) was set to 2. We performed

100,000 iterations, which took a day at most. For post-

processing, we applied PCA to 1,024 randomly-sampled

latent codes to obtain bases W. We used the Adam op-

timizer with a learning rate of 0.05 and performed 200

iterations for the cat images and 50 iterations for the

anime portrait images. Testing one image took about

0.2 seconds for the encoder-based approach and around

10 seconds for post-processing. To increase interactiv-

ity, the users first edited images via only the encoder-

based approach and then used post-processing as nec-

essary.

4.2 Results

Qualitative results. Figures 8 and 9 show cat and anime

portrait images generated from semantic scribbles. In

these comparisons, pSp [26], which was trained only

with a one-shot example without our pseudo seman-

tic scribbles and randomly-sampled images, ignored the

input layouts due to over-fitting to the single training

examples and did not reflect the input layouts in the

results. We obtained the other results via our frame-

work with different pseudo-labeling approaches. The

compared methods are DatasetGAN [43] and Repur-

poseGAN [35], which use pre-trained StyleGAN mod-
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Fig. 9: Comparison of the anime portrait images generated using the cross lines in one-shot setting.

Table 1: Layout faithfulness scores in user study. Best

score and second best score in each row are marked in

red and blue. OAvg. means overall average for all cases.

Cat

ID DatasetGAN RepurposeGAN Ours Ours w/ post.

1 3.27 1.67 3.33 4.13

2 1.60 1.33 3.87 4.73

3 2.93 1.87 3.93 3.93

4 2.07 1.20 4.53 4.60

Avg. 2.47 1.52 3.92 4.35

Anime portrait

ID DatasetGAN RepurposeGAN Ours Ours w/ post.

5 3.47 4.13 3.60 3.73

6 4.27 3.87 4.00 4.33

7 1.93 1.80 2.93 4.53

8 2.27 3.13 4.40 4.47

Avg. 2.98 3.23 3.73 4.27

OAvg. 2.73 2.38 3.83 4.31

els similarly to ours2. For the cat results, the com-

pared methods did not sufficiently consider the given

layouts. In contrast, our results overall reflected the

given layouts. For the anime portrait results, the com-

pared methods worked relatively well. Still, some results

2 We used the public codes with the default settings
that can be downloaded from the DatasetGAN and Repur-
poseGAN project pages.

did not reflect the given layouts (e.g., face orientation

in the third row in Figure 9). Meanwhile, our method

worked well as seen in the overall results. Furthermore,

post-processing (Ours w/post.) improved their layouts,

especially in the case of the cat results. We also demon-

strate our interactive demo in the supplemental video.

Additionally, Figure 14 shows results with LSUN car

and ukiyo-e datasets (see Appendix A for details).

User study. We conducted a user study for quantita-

tive evaluation to compare our method with the previ-

ous work regarding the layout faithfulness of generated

images. We asked 15 participants to score the eight sets

of results in Figures 8 and 9 in a range of 1 to 5, where

1 means that the generated images did not match the

input layouts at all, and 5 means that the generated im-

ages completely matched input layouts. We compared

the results of four methods (i.e., DatasetGAN, Repur-

poseGAN, Ours, and Ours w/post), and thus the num-

ber of collected evaluations is 256.

Table 1 shows the average scores for each case, the

average scores for each category, and the overall aver-

age scores for all cases. We assigned an index to each

case in the order from top to bottom rows in Figures 8

and 9. For the cat results, our method obtained the

best score, and we can also confirm the effectiveness of

the post-processing stage. For the anime portrait re-
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Test Input Our Multi-modal Outputs

Fig. 10: Multi-modal results of our method.
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Fig. 11: Intermediate training outputs.

sults, while the compared methods sometimes obtained

the best score, our method obtained the best or second

best scores for all cases and obtained the best score on

average. Overall, Ours and Ours w/ post. outperformed

the compared methods on average in the user study.

Multi-modal generation. Figure 10 demonstrates that

our method can generate multi-modal results. To obtain

multi-modal outputs in test time, we followed the same

approach as pSp [26]; we fed latent codes encoded from

an input layout to the first l layers of the generator and

random latent codes to the other layers. We set l = 5

for the results in Figure 10, and l = 8 for the other

results.

Analysing training procedure. Figure 11 shows the in-

termediate outputs during training iterations. For each

set of results, we fed random latent codes to the pre-

trained StyleGAN generator to obtain synthetic images

(top row) and feature vectors, from which we calculated

pseudo semantic scribbles (middle row). We then used

the pseudo semantic scribbles to train the encoder to

generate latent codes for reconstructing images (bottom

row). It can be seen that the layouts of the bottom-row

images reconstructed from the middle-row pseudo se-

mantic scribbles gradually become close to those of the

top-row StyleGAN samples as the training iterations

increase.
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Fig. 12: Comparison of pseudo labeling. Given StyleGAN2’s outputs, we obtained pseudo-labeled results using our

method, RepurposeGAN [35], and SemanticGAN [20]. Given StyleGAN’s images, we also obtained pseudo-labeled

results using DatasetGAN [43].

Analyzing pseudo labeling. We analyzed the fidelity3 of

pseudo labeling. Figure 12 shows pseudo-labeled im-

ages generated by the compared methods using one-

shot pairs in Figures 8 and 9. Using our method and

RepurposeGAN [35], we assigned class labels to Style-

GAN2’s outputs generated from the same latent codes.

Meanwhile, we could not evaluate DatasetGAN [43]

with the same inputs because the official code uses

not StyleGAN2 but StyleGAN. We, therefore, ana-

lyzed the labeling performance for other inputs qualita-

tively. As can be seen in the results of RepurposeGAN

and DatasetGAN, some noise appeared, and labels

were missing. These existing approaches, which train

segmentation models, are suitable for “few-shot” and

“dense” semantic segmentation, as their papers demon-

strated. However, their performance may decrease due

to overfitting for “one-shot” and “sparse” semantic

3 Note that achieving perfect pixel alignment between
pseudo semantic scribbles and output images is out of our
scope and might be too difficult in our one-shot scenario.

scribbles consisting of imbalanced class labels. In addi-

tion, we compared our method with SemanticGAN [20].

This approach does not use pre-trained StyleGAN mod-

els and trains GANs from scratch. Therefore, we trained

SemanticGANs using the official code with the LSUN

cat [40] and Danbooru2019 portrait [4] datasets, and

our one-shot annotations. However, the labeling results

looked not like sparse scribbles but rather like inac-

curate dense masks. In addition, the generated masks

looked similar even if the input images were different,

probably because mode collapse occurred due to the

lack of annotation data. In contrast to these existing

methods, our pseudo labeling is simple yet effective for

sparse semantic scribbles.

5 Conclusion and Future Work

In this paper, we proposed a simple yet effective

method for controlling StyleGAN’s outputs using se-
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(a) (b) (c) (d) (e)

Fig. 13: Limitations of our method. (a)(b) Our encoder-

based method cannot consider complex layouts. (c)

Post-processing can improve results somewhat. In addi-

tion, (d)(e) we cannot handle layouts that pre-trained

StyleGAN models cannot reproduce.

mantic scribbles in a one-shot scenario for the first

time. To compensate for the lack of pixel-wise annota-

tion data, we generate pseudo semantic scribbles via k-

nearest-neighbor mapping between the feature vectors

of a pre-trained StyleGAN generator and each semantic

class in one-shot labeled pairs. In each training itera-

tion, we can generate a pseudo label from random noise
to train an encoder [26] for controlling the pre-trained

StyleGAN generator using a simple L2 loss. In addi-

tion, we proposed a post-processing method that opti-

mizes latent codes and refines generated images accord-

ing to principal directions in the latent space. Exper-

iments demonstrated that our method can synthesize

high-quality images with more accurate spatial control

than competitive methods.

Limitations. Because our pseudo labeling is not com-

pletely accurate, its performance may also affect the

results of the encoder-based approach. As shown in Fig-

ure 13(a)(b), the input layout contains two cats, but the

result contains only one cat. Post-processing can allevi-

ate this problem somewhat, as shown in (c). In addition,
our method, which depends on pre-trained StyleGAN

models, cannot handle layouts that the StyleGAN mod-

els cannot reproduce. For example, as shown in Fig-

ure 13(d)(e), even if we draw the cross lines on the

right side of the image, it is difficult to generate im-

ages that reflect those positions because the StyleGAN

model is trained with aligned faces. The GAN inversion

method [16] and StyleGAN3 [17], which can handle ge-

ometric translations, might solve this problem in the

future. Finally, although the scope of this paper is to

control StyleGAN using sparse semantic scribbles, we

would also like to extend our method to handle dense

inputs, such as semantic segmentation masks.
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A Additional Qualitative Results

As shown in Figure 14, we also tried applying our method to
other StyleGAN models pre-trained with LSUN car or ukiyo-e
datasets. We can see that our method can generate photoreal-
istic images according to the given layouts even if the one-shot
training examples and test inputs were specified roughly and
sparsely. We can also confirm that our post-processing made
the generated images more faithful to the given layouts.


