

Interactive Image Editing Methods for

Reproducing Real-world Appearance Variations

March ２０１７

Yuki Endo

Interactive Image Editing Methods for

Reproducing Real-world Appearance Variations

Graduate School of Systems and Information Engineering

University of Tsukuba

March ２０１７

Yuki Endo

Abstract

Photorealistic reproduction of real-world phenomena such as weathering (appearance change
of materials over time) and reflection on the surfaces of materials is crucial for image ma-
nipulation to represent scenes as realistic and natural ones. Thanks to the ease and ubiquity
of digital cameras and broadband Internet, a large amount of digital image data can be
easily obtained, and thus 2D image operations are important for not only professionals in
several industries (e.g., advertising and computer game) but also amateurs that share im-
age contents on the web. However, it is difficult for many users to create photorealistic
effects on images by using general image editing tools. This is because these operations
require sophisticated expertise for individual phenomena as well as specialized skills of
image processing. Therefore, this thesis presents a framework containing solutions to these
problems.

In particular, our framework contains four solutions: (1) physical simulation-based
method that generates specific weathering, (2) example-based method that can handle var-
ious types of weathering, (3) matting and compositing method that synthesizes effects
caused by optical phenomena by considering reflection and refraction of light, and (4)
interactive image preprocessing method that deeply considers user intent for image editing.

First, we focus on water flow stains that are salient effects among weathering phenom-
ena. Our method employs particle simulations in order to reproduce water flow stains on
images. We expand an exiting simulation scheme, and our simulation scheme generates
realistic results on images by considering surface roughness on a wall and perspective of a
scene. The perspective is easily specified by the user using our interactive interface.

Next, we propose a method that can reproduce various types of weathering including
rust and moss with bumpy surfaces that existing methods cannot handle. The example-
based method exploits weathering examples in images to generate weathering effects. In
our method, the pixels of a target object containing weathered regions is separated into two
components, shading and reflectance. The reflectance component of weathering spreads
as the weathering progresses. On the other hand, to handle bumpy surface of weathering,
fine-scale details of shading are extracted as high-frequency components of the shading
image, and they are added onto weathered object surfaces.

In addition, a matting method is proposed to decompose pixels on the surface of an
object into reflection and transmission layers, and alpha matte (mixing ratio of reflection
and transmission layers) on the basis of optical phenomena called Fresnel reflection. The
decomposed layers are composited to synthesize reflections of newly inserted objects by
using ray tracing. This is the first attempt to extract the complicated reflection for Fresnel
reflection in a single image.

For the above methods, a user needs to preliminarily specify a regions of interest (ROIs)
where several effects are synthesized. In general image editing, this operation is also essen-
tial to create desired images. However, carefully specifying ROIs is tedious. Therefore, we

1

propose a technique that can automatically extract ROIs from a few sparse user inputs on
the basis of image features. This technique is generally called edit propagation but existing
methods cannot sufficiently consider user intent for feature extraction, and thus extracting
appropriate ROIs is difficult in some cases. In order to solve this problem and accurately
extract ROIs, we propose a method that can automatically learn appropriate image features
using deep neural networks (DNNs). We also present an efficient learning scheme of our
DNN model. Our method can be applied to not only ROIs extraction but also several image
editing tasks such as colorization.

We conduct extensive experiments including user studies and demonstrate that our
methods enable users to more easily create realistic images with real-world phenomena
than previous approaches. Finally, we conclude this thesis by providing future vision of
photorealistic image editing techniques.

2

Acknowledgements

First and foremost, I would like to thank my supervisors, Prof. Jun Mitani and Prof. Yoshi-
hiro Kanamori who give insightful comments and suggestions. This thesis has been done
under the direction of them, and would not have been possible without their helpful advices
and encouragement.

I am sincerely and extremely grateful to Prof. Yoshihiro Kanamori. His constant en-
couragement and very broad knowledge in computer graphics as well as his expertise in
paper writing allowed me to grow as a research scientist. Furthermore, his enthusiasm and
attitude toward research were valuable experiences for me, and his sense of humor made
working at the lab a pleasant experience.

In addition, I would like to express my gratitude to so many my colleagues of Nippon
Telegraph and Telephone (NTT) Corporation for allowing me to grow as a researcher and
person. I would like to especially thank the members at NTT Service Evolution Laborato-
ries, Dr. Hiroyuki Toda, Takafumi Inoue, Dr. Kyosuke Nishida, Dr. Makoto Nakatsuji, Dr.
Yoshihiko Suhara, Yasuyuki Kataoka , Jun Ito, Mayumi Hadano, and Takuya Nishimura. I
learned visions and philosophy of research from them.

I would also like to thank Emeritus Professor Seiichi Nishihara, Emeritus Professor
Yukio Fukui, and so many members of non-numerical processing algorithms laboratory for
giving me constructive comments and warm encouragement.

I am grateful to great faculty members, Prof. Kazuhiro Fukui, Prof. Hitoshi Kanoh,
Prof. Suguru Saito, and Prof. Ko Sakai for reviewing this thesis and giving insightful
comments.

Finally, I would like to thank my parents for always being supportive.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Principal Contributions . 3
1.3 Outline . 6
1.4 Publications and Awards . 7

1.4.1 Reference papers . 7
Journal papers (with peer review) 7
International conference papers (with peer review) 7
Domestic conference papers (with peer review) 7
Domestic conference papers (without peer review) 7

1.4.2 Other papers . 8
Journal papers (with peer review) 8
International conference papers (with peer review) 8
Domestic conference papers (with peer review) 9
Domestic conference papers (without peer review) 9
Technology reports of University of Tsukuba (without peer review) 10

1.4.3 Grants and awards . 10
First Author . 10
Coauthor . 10

2 Related Work 12
2.1 Reproduction of Real-world Appearance Variations 12

2.1.1 Time-varying appearance variations 12
2.1.2 Optical appearance variations . 13
2.1.3 Material editing based on human perception 14

2.2 Edit Propagation . 15
2.3 Deep Learning . 15

3 Reproduction of Water Flow Stains 17
3.1 User Interface . 17

3.1.1 Control lines . 18

i

Source line . 18
Terminal lines . 19
Control mesh . 19

3.1.2 Simulation parameters . 19
Water Amount. 20
Particle Size. 20
Absorptivity. 20
Surface Roughness. 21
Deposition Amount. 21
Deposition Resolvability. 21

3.2 Simulation Scheme . 22
3.2.1 Dorsey et al.’s model . 22
3.2.2 Our simulation model . 23

Basic Modifications to Dorsey et al.’s Model. 23
Displacement due to Luminance Variations. 24
Adjustment to the Perspective in the Image. 24

3.3 Results . 27
User Test. 28

4 Example-based Weathering with Geometric Details 33
4.1 The Method of Bandeira and Walter . 34
4.2 Modeling Weathering Effects with Geometric Details 34

4.2.1 Extraction of shading details . 37
4.2.2 Texture synthesis . 37
4.2.3 Weathering with geometric details 38
4.2.4 Deweathering with geometric variations 38

4.3 Weathering Transfer with Geometric Details 39
4.4 A De/Weathering Brush Tool . 41
4.5 Results . 43

5 Reproduction of Reflection on Surfaces 47
5.1 Reflection Matting . 48

5.1.1 Reflection model and assumptions 48
5.1.2 Estimating transmission component T 50
5.1.3 Estimating α matte and reflection component R 51
5.1.4 Updating R and α . 54

5.2 Reflection Composition . 56
5.3 Experimental Results and Discussion . 56

6 ROIs Extraction for Efficient Image Editing 64
6.1 DNN Architecture . 67

ii

6.1.1 Visual feature extractor (VFE) . 68
6.1.2 Spatial feature extractor (SFE) . 69
6.1.3 Feature combiner (FC) . 69
6.1.4 Label estimator (LE) . 69

6.2 Learning DNN from User Strokes . 70
6.2.1 Efficient DNN update per user edit 72

6.3 Edit Propagation Using DNN . 73
6.3.1 Estimating probability maps . 73
6.3.2 Post-processing . 74

6.4 Experiments . 74
6.4.1 Evaluation of proposed method 75
6.4.2 Comparison with previous methods 77

Compared features . 77
Results . 78

6.4.3 User study . 79
6.5 Discussion and Future Work . 80

7 Conclusion and Future work 89
7.1 Summary of Contributions . 89
7.2 Future Work . 90

References 91

iii

List of Figures

1.1 Examples of real-world appearance variations, water flow stains (top row),
rust and moss (middle row), and reflection (bottom row). 2

1.2 The framework and categorization of reproducing real-world appearance
variations and research focuses in this thesis. 4

3.1 Screenshot of our system.1 . 18
3.2 Two types of control lines and a control mesh for the particle simulation.

(a) The blue line specifies the source position of particles, and the green
lines represent the terminal positions; particles are removed when they
touch these lines. (b) The perspective of the input image is specified by
the control mesh in order to adjust the amount of deposits according to the
perspective. 19

3.3 Effect of Water Amount. 20
3.4 Effect of Particle Size. 20
3.5 Effect of Absorptivity. 21
3.6 Effect of Surface Roughness. 21
3.7 Effect of Deposition Amount. 22
3.8 Effect of Deposition Resolvability. 22
3.9 Simulation results (c) with and (b) without accounting for the displacement

defined by the variations of luminance values in (a) the input image. 24
3.10 The upper right: control mesh. The lower left: visualized results of ρ(x) on

the depth map calculated from each control mesh. The maps are rectangle
because these are defined in a parameter space. The darker the locations,
the father from the viewpoints . 25

3.11 Particle simulation using the control mesh. The pixel coordinates of parti-
cles on the simulation space is computed from the coordinates of the par-
ticles in the parameter space using a Jacobi matrix J calculated from the
adjusted control mesh. 26

3.12 Comparison of the results without (left) and with (right) using control
mesh. 27

iv

3.13 (b)(d)(f)(h) Synthesized images with water flow stains using our system.
The image sizes of their inputs are (a) 500× 375, (c) 512× 384, (e) 452×
491, and (g) 300 × 500 pixels. The times for editing are about (b) 3 min,
(d) 10 min, (f) 4 min, and (h) 5 min. 28

3.14 The resultant images without (c) and with (d) applying the control mesh
(b) to input image (a). 30

3.15 Resultant images with different image sizes for the same scene as Figure
3.3. The image size and simulation time for a single execution are listed
under each image. 31

3.16 Graphs summarizing the results of a user test. Each of six subjects was
asked to synthesize two images, one using our system and the other using
Photoshop, so that the images became satisfying for the subject. (a) shows
the time of design process across six subjects and two design tools. (b)
Then ten people voted on the result, regarding how natural each image is.
The number represents that of votes for each system. 31

3.17 Results of the user test, comparing our system to Photoshop. The users
were presented (a) a reference example (a real photograph) and asked to
edit (b) a given image until the user gets satisfied. The middle row (c)(d)(e)
presents the results by different users using our system whereas the bottom
row (f)(g)(h) shows those using Photoshop. 32

4.1 Example images of rust effects. Top left: the input image. Bottom left: a
resultant image by Bandeira and Walter [5]. Bottom right: a resultant image
by our method, with geometric details caused by rusting. Each magnified
figure is shown at the top right. 35

4.2 A typical example of the fact that weathered regions often become rough.
Left: A photograph of a rusting surface. Middle: illuminance of the left
image. Right: intensity plots along a red scanline of illuminance. 36

4.3 Decomposition of the input image into reflectance and illuminance. 36
4.4 Decomposition into coarse features and fine features. 38
4.5 An outline of the synthesis. Fine features of illuminance are synthesized in

a weathered region based on a weathering degree map. 39
4.6 An overview of synthesis of weathering effects with geometric variations.

The weathered illuminance is calculated based on the weathering degree
map and the synthesized fine features. The resultant image is obtained by
multiplying the precomputed reflectance and synthesized illuminance. . . . 40

4.7 A comparison of deweathering processes. Left to right: the input image, a
deweathered result by Bandeira and Walter [5] and a deweathered result by
our method. Magnified images are shown at upper left of the resuls. 41

v

4.8 An editing result with our brush tool. The red circular regions are weath-
ered and the green circular region is deweathered. The side-by-side com-
parisons before/after editing are shown above. 42

4.9 A result of weathering transfer with geometric details. To reproduce the
weathering distribution of the source material, we mapped a weathering
degree map synthesized from the source material onto the target object.
Top left: the input image. Top right: the source material. Bottom left: a
weathered result. Bottom right: a more weathered result. 43

4.10 Comparisons of mossy effects. Left: input images. Middle: resultant im-
ages by Bandeira and Walter [5]. Right: resultant images by our method. . 44

4.11 Comparisons of rusting effects. Left: input images. Middle: resultant
images by Bandeira and Walter [5]. Right: resultant images by our method. 44

4.12 A comparison of weathering transfer. Left to right: a input image, a resul-
tant image by Bandeira and Walter [5], a resultant image by our method,
and magnified images (top: the previous method, bottom: our method). . . 46

5.1 Overview of our system. To solve the matting problem, the user specifies
the region of reflection surface and the pairwise scribbles. After the several
matting steps, a composite result with plausible reflection can be obtained. 48

5.2 Relationship between a reflection surface and camera parameters. 52
5.3 To calculate α(p) as a training sample, we search for a pixel that has the

smallest ϵ within search window Wϵ (blue square, enlarged for illustration
purpose), and use it as sample R(q). The center of search window Wϵ is
vertically away from the boundary ∂Ω by distance d. 54

5.4 Geometric interpretation of our filter. The degree of smoothing by the filter
depends on weight function β, which indicates the angle between vectors
I(x) − T and I(y) − T in RGB color space, and can detects the color
variation of true R. With this weight function, our filter can smoothen
waves only caused by the variation of α. 58

5.5 A comparison of the results between our filter and typical existing filters
as well as ground-truth data. Note that our filter yields the most faithful α
matte and the most plausible reflection image in the composite result. . . . 59

5.6 Contact constraint. (a) The user can specify the bottom of an object using
a green scribble, (c) to make the object contact with the reflection surface
appropriately. 60

5.7 Height adjustment. The user can adjust the height of objects for flying
objects using the mouse wheel. 61

5.8 Our synthetic results with photographs including water surfaces. Each inset
shows a magnified image of our result. 61

vi

5.9 Comparison between the result of Poisson Image Editing [67] and ours.
Whilst Poisson Image Editing requires a real reflection image and might
produce an unnatural result due to waves of different wavelength or dif-
ferent camera angles, our method can synthesize plausible reflection even
without any real reflection image. 62

5.10 Our method can handle reflection at a wet ground (left) and off-specular re-
flection at glossy surfaces including a table top (middle) and a floor (right).
Note that original objects (insets in (a), (c), (e)) do not have reflection im-
ages. 63

5.11 Limitation of our method. The top of the tea cups are rendered in reflection
images (red oval), which is physically incorrect. This is because of the
billboard approximation used in ray tracing. 63

6.1 Image colorization using edit propagation. While existing methods [53] [94]
(denoted as [LJH10] and [XYJ13]) require manual parameter tuning for
each image feature, our DNN-based method automatically extracts stroke-
adapted features. 65

6.2 System overview. The system first learns a DNN model from an input
image and user strokes. Next, stroke probabilities on all pixels are esti-
mated using the DNN model, and probability maps are obtained. Finally,
the probability maps are refined by post-processing. Every time the user
updates strokes, the system updates the DNN model efficiently using pre-
viously learned parameters. 66

6.3 Our deep neural network architecture. 67
6.4 Our strategy of DNN learning. We first pre-train visual features on the

network consisting of the VFE, FC, and LE using backpropagation, and
then learn the entire network together with the SFE. 71

6.5 Efficient model parameter update. If user strokes are added or removed,
model parameters of the LE are updated efficiently using previous param-
eters. 73

6.6 Comparisons of recolorization results without and with visual feature pre-
training. 75

6.7 Comparison of colorization results without (w/o) and with (w/) updating
parameters. The caption under each result shows computational time of
learning. 82

6.8 Results with training data of different ratio. The input image and user
strokes are the same as Figure 6.1. The caption under each image shows
the percentage of samples of training data (left) and computational time of
learning (right). 83

vii

6.9 Results with different number of superpixels. The caption under each
image shows the percentage of the number of superpixels to that of the
original image pixels (left) and computational time of estimation and post-
processing (right). 84

6.10 Comparisons of color image recoloring and grayscale image colorization.
For the existing methods [53] [94] (denoted as [LJH10] and [XYJ13], the
feature parameters used in each column are shown in the bottom. 85

6.11 (a) Micro average PR curve that shows comparisons of foreground segmen-
tation using 50 images randomly selected from MSRA 1k dataset [1]. (b)
Magnified PR curve. 86

6.12 Comparisons of several results of foreground segmentation selected from
MSRA 1k dataset [1]. Each segmented result is visualized by binarizing a
probability map using a threshold (50%). 86

6.13 Results of user study. Error bars show the standard deviation, and results
marked with ’*’ show statistically significant differences as measured by
paired t-test. 87

6.14 Results with NIN model instead of our VFE. The same input image and
user strokes are used for each image in Figures 6.1, 6.2, 6.10top and upper
center. 88

viii

Chapter 1

Introduction

This chapter gives a brief introduction in the main goals of this thesis. It summarizes
methods and results contributed by the thesis and concludes with a short overview over the
organizational structure of this document.

1.1 Motivation
In the field of computer graphics (CG), many approaches for reproducing appearance of
materials have been studied. For example, as shown in Figure 1.1, most materials in the real
world change their appearance over time because they sometimes get rust and dirty. The
appearance also varies depending on materials themselves, that is, glass transmits light, and
water surfaces reflect scenery and objects around. Reproducing such real-world appearance
variations by using CG techniques is not only crucial for enhancing realism in rendering
3D scenes but also important for image manipulation to represent scenes as realistic and
natural ones. This thesis studies the image editing techniques for reproducing real-world
appearance variations on 2D images.

An alternative route to reproducing real-world appearance variations on 2D images
is to use commercial image editing software such as Adobe Photoshop. A user generates
desired image contents using many types of tools such as a color brush and spray on specific
regions. This approach enables users to edit images in detail by making full use of many
tools and parameter settings. However, due to such wide degree of freedom for editing
operations, the user needs sophisticated expertise for appearance variations as well as
specialized skills of image editing to create photorealistic effects on 2D images. If we
can devise reproduction techniques of real-world appearance variations on 2D images and
can provide interactive user interface with a few user inputs, such complicated editing
operations are simplified and the burdens imposed on the user are reduced.

To compensate for these requirements, the purposes of this thesis are (1) to model real-
world appearance variations on 2D images. Additionally, in order to apply such models

1

Figure 1.1: Examples of real-world appearance variations, water flow stains (top row), rust
and moss (middle row), and reflection (bottom row).

2

to specific objects in images, (2) extracting regions of interest (ROIs) as preprocessing
is an important editing operation. This procedure is also useful for other basic editing
operations, such as colorization, smoothing, and tone adjustment. As for (1), however,
most existing methods require 3D geometry of target objects, optical attributes of materials
and light sources, and object behavior based on physical laws. Additionally, it is difficult
for most users to handle generic 3DCG modeling software. For this reason, image-specific
methods that can reproduce real-world phenomena are needed. As for (2), although a
number of approaches have been proposed to efficiently extract ROIs with a few user inputs,
they cannot appropriately consider user intent. Consequently, the extracted regions often
protrude outside the ROIs or become smaller than the ROIs, and thus the user takes a lot of
trial and error.

In summary, the goal of this thesis is to establish an efficient framework consisting
of preprocessing and reproduction methods for real-world appearance variations on 2D
images.

1.2 Principal Contributions
As this thesis mentioned before, existing general image editing software requires sophis-
ticated expertise for individual appearance variations and specialized skills of image pro-
cessing .

For the solution to the former problem, A number of approaches to modeling real-world
appearance variations on 2D images have been proposed in computer graphics. As shown in
Figure 1.2, this thesis focuses on two main categories in real-world appearance variations;
time-varying and optical appearance variations. For example, the former category includes
weathering effects and different times of day (morning, daytime, and night), and the latter
category includes surface reflection, shadow, and haze. This thesis focuses on weathering
effects and surface reflection because these phenomena are ubiquitous in our daily lives but
methods for them have not been well established.

Furthermore, as we explained before, specifying ROIs is especially important for our
applications. Given sparse user strokes or bounding boxes as input, most existing methods
extract ROIs on the basis of visual and spatial features such as color, textures, and coordi-
nates. In the existing methods, the accuracy of extracted ROIs heavily depends pre-selected
features and their weights. However, these conditions have been determined by the system
designers on the basis of their heuristics. That is, we need to preliminarily define the sim-
ilarity measures between image features but this procedure is difficult, and the existing
methods takes a lot of user inputs and trial and error.

In particular, we present the following solutions to the above challenges:

1. Physical simulation-based method that generates specific weathering

2. Example-based method that can handle various types of weathering

3

Figure 1.2: The framework and categorization of reproducing real-world appearance vari-
ations and research focuses in this thesis.

3. Matting and compositing method that synthesizes effects caused by optical appear-
ance variations (reflection of light)

4. Interactive image preprocessing method that appropriately considers user intent using
deep neural networks for efficient image editing such as ROIs extraction, (re)colorization,
etc.

The detailed contributions to each method are described as follows:
Reproduction of weathering effect based on physical simulation: We focus on a salient
aging effect, stains by water flows, and present a system that allows the user to add such
stains directly and easily onto building walls in outdoor images. Our system represents a
water droplet with a particle and simulates the dissolution, transport and sedimentation of
deposits using particles in the regions specified by the user. While simulation scheme is
based on a simple model proposed for 3D models by Dorsey et al. [27], we modify it to
improve the performance and the usability for image editing. In the simulation, realistic
and complex stains can be obtained by accounting for the surface roughness where water
flows. The user can specify the initial and terminal positions of particles by drawing a few
lines. Furthermore, the user can adjust the amount of deposits according to the perspective
in the image; using a control mesh drawn by the user, our system makes water flow stains
shorter and thinner as the distance from the viewpoint gets longer. The quick feedback of
the simulation enables interactive manipulation.
Reproduction of weathering effect based on examples: In addition to the simulation-
based approach, we propose example-based approach that uses weathering exemplars on
images. Although the example-based approach cannot reproduce weathering effects based
on physical laws in the same way as the simulation-based approach, it can handle many
kinds of weathering if exemplars are available on input images. However, existing example-

4

based methods cannot handle weathering effects with geometric details such as moss and
rust. To solve this problem, we propose a technique for modeling weathering effects with
time-varying geometric details in images. Specifically, we focus on spatio-temporal vari-
ations of shading as well as reflectance due to weathering. We extract fine-scale details
of shading as high-frequency components of the shading image, and add them onto object
surfaces as weathering progresses. This extraction can be done with only a few additional
user inputs. De/weathering with time-varying shading is accomplished in our work for the
first time, and substantially enhances the reality of de/weathering effects. Moreover, we in-
troduce a brush-like user interface for editing weathering effects locally and interactively.
This interface allows the user to edit arbitrary weathering distributions, for example, similar
to those observed in the real world.
Reproduction of surface reflection: We propose a matting method that handles surface
reflection in a single image based on user markups. Targeting reflection at surfaces such
as the surface of deep water, glossy table top or floor, we introduce the following three
assumptions; 1) the transmission color can be approximated as uniform, 2) a pair of an
object that is the source of reflection and the corresponding reflection image can be found
in the input image, and 3) the reflection surface is mostly planar but possibly wavy. We
first estimate the transmission color based on the first and second assumptions, using color
transfer. We then roughly estimate the reflection component and alpha matte as well as
camera parameters, assuming the alpha matte is smooth. However, the alpha matte should
contain high-frequency regions in case of wavy reflection surfaces. We thus propose a
novel filter to refine the alpha matte, which is validated using ground-truth data. Using
the calculated information, we also provide a compositing system with which the user can
composite new objects onto the input image with plausible reflection in real time.
ROIs extraction for efficient image editing: To extract ROIs with a few user inputs, edit
propagation is a well-known approach. In this approach, a user roughly specifies sparse
strokes in target regions, and then ROIs are automatically extracted on the basis of the
specified user strokes and image features. By propagating image edits on user strokes to the
extracted ROIs, edit propagation can be used for various applications such as colorization
and tone adjustment. However, previous work must heuristically select the image features
and adjust parameters for the features in accordance with a user’s needs and target images.
To address this issue, we employ deep neural networks (DNNs). Our method uses low-level
visual patches and spatial pixel coordinates as input of a DNN that automatically extracts
features adapted to user-specified strokes from a single image. In contrast to most previous
work, we do not need to adjust the importance of the input features. Then, we use the DNN
as a classifier that estimates user stroke probabilities, which represent how likely it is that
each pixel belongs to each stroke, from extracted features on the entire image.

5

1.3 Outline
This thesis consists of six chapters on the following pages.

This thesis begins by reviewing related work in Chapter 2. We overview existing studies
for reproducing real-world appearance variations such as weathering and surface reflection.
Specifically, we introduce methods for several types of weathering and optical appearance
variations for 3DCG as well as 2DCG and explain challenges existing in these methods.
Besides, we describe related studies to edit propagation that can efficiently extract image
masks.

In Chapter 3, this thesis proposes an interactive design system for water flow stains on
outdoor images. In our system, a user specifies some control lines and tunes simulation
parameters using our user interface explained in this chapter. The thesis also proposes a
particle simulation model that can reproduce water flow stains on 2D images. We conduct
a user study to verify the effectiveness of our method by comparing our system with an
existing image editing software

Different from the above simulation-based approach, Chapter 4 focuses on example-
based approach that can handle various types of weathering with geometric details. We
first introduce an existing example-based method and then describe our model for weath-
ering with geometric details. Furthermore, we explain a weathering transfer method and
a brush interface for interactive editing. Comparing our method with the existing method,
we evaluate the effectiveness of our method.

In Chapter 5, this thesis proposes a matting and compositing framework for Fresnel
reflection on wavy surfaces. We first describe our matting procedure that decomposes target
surfaces on an input image into a reflection layer, transmission layer, and mixing ratio of
them (alpha matte). The thesis also describes a method that composites new reflection on
the basis of decomposed layers. We discuss qualitative results generated by our method
and a related method.

In Chapter 6, this thesis presents a variant of edit propagation, which can efficiently
extract ROIs from sparse user stroke input. To automatically extract appropriate images
features and determine the weights of them, a novel DNN architecture is proposed. The
DNN model learns image features from user strokes and propagates image edits to regions
where the user strokes are not specified. In our experiments, we apply our method to several
image editing such as segmentation for mask extraction and (re-)colorization. We evaluate
the result of these application with our DNN model by using existing image segmentation
dataset and conducting a user study for colorization.

Chapter 7 summarizes the conclusions of this thesis and provides future research direc-
tions.

6

1.4 Publications and Awards

1.4.1 Reference papers
This thesis is based on the following publications:

Journal papers (with peer review)

1. Y. Endo, S. Iizuka, Y. Kanamori, and J. Mitani: “DeepProp: Extracting Deep Fea-
tures from a Single Image for Edit Propagation,” Computer Graphics Forum, Vol.35,
No.2, pp.189-201, May 2016.

2. Y. Endo, Y. Kanamori, J. Mitani, Y. Fukui: “A Design System for Water Flow Stain
Images Using Particle Simulation ,” IPSJ Journal, Vol.56, No.3, pp.1049-1058, 2015
(in Japanese with English Abstract).

3. Y. Endo, Y. Kanamori, Y. Fukui, and J. Mitani: “Matting and Compositing for Fresnel
Reflection on Wavy Surfaces,” Computer Graphics Forum, Vol.31, No.4, pp.1435-
1443, June 2012.

International conference papers (with peer review)

1. Y. Endo, Y. Kanamori, J. Mitani, and Y. Fukui: “Weathering Effects with Geometric
Details for Images,” In Proc. of Computer Graphics International 2011, s-24 pp.1-4,
Otawa, June 2011.

2. Y. Endo, Y. Kanamori, J. Mitani, and Y. Fukui: “An Interactive Design System for
Water Flow Stains on Outdoor Images,” In Proc. of Smart Graphics 2010, pp.160-
171, Banff, June 2010.

Domestic conference papers (with peer review)

1. Y. Endo, Y. Kanamori, J. Mitani, and Y. Fukui: “Water Flow Stain Generation Sys-
tem in Images Using Particle Simulation,” VC/GCAD Symposium 2010, 2010 (in
Japanese).

2. Y. Endo, Y. Kanamori, J. Mitani, and Y. Fukui: “Water Flow Stain Generation System
in Images Using Particle Simulation,” NICOGRAPH 2010, 2010 (in Japanese).

Domestic conference papers (without peer review)

1. Y. Endo, Y. Kanamori, J. Mitani, and Y. Fukui: “Reflection Matting and Compositing
in Images,” Proceedings of the 146th GCAD, 2012 (in Japanese).

7

2. Y. Endo, Y. Kanamori, J. Mitani, and Y. Fukui: “Interactive Weathering Editing Sys-
tem for Scene Images Using Appearance Maps,” Proceedings of the 139th GCAD,
2010 (in Japanese).

1.4.2 Other papers
The additional following papers were also published but not directly related to this thesis:

Journal papers (with peer review)

1. Y. Endo, H. Toda, K. Nishida, J. Ikedo: “Classifying spatial trajectories using rep-
resentation learning,” International Journal of Data Science and Analytics, pp 1-11,
2016.

2. S. Iizuka, Y. Endo, Y. Kanamor, and J. Mitani: “Single Image Weathering via Exem-
plar Propagation,” Computer Graphics Forum, Vol.35, No.2, pp.501-509, May 2016.

3. M. Kawano, Y. Endo, H. Toda, Y. Koike, K. Ueda: “Feature Extraction from Move-
ment Trajectory Based on Recursive Autoencoder,” DBSJ Journal, Vol.14, No.12,
pp.1-6, 2016 (in Japanese with English Abstract).

4. Y. Endo, H. Toda, Y. Koike: “Feature Extraction from GPS Logs Using Representa-
tion Learning for Transportation Mode Estimation,” IPSJ Transaction on Databases,
Vol.8, No.3, pp.12-23, 2015 (in Japanese with English Abstract).

5. S. Iizuka, Y. Endo, Y. Kanamori, J. Mitani, and Y. Fukui: “Object Repositioning
Based on the Perspective in a Single Image,” Computer Graphics Forum, Vol.33,
No.8, pp.157-166, Dec. 2014.

6. S. Iizuka, Y. Endo, Y. Kanamori, J. Mitani, and Y. Fukui: “Efficient Depth Prop-
agation for Constructing a Layered Depth Image from a Single Image,” Computer
Graphics Forum, Vol.33, No.7, pp.279-288, Oct. 2014.

7. S. Iizuka, Y. Endo, J. Mitani, Y. Kanamori, and Y. Fukui: “An Interactive Design
System for Pop-Up Cards with a Physical Simulation,” The Visual Computer, Vol.27,
No.6, pp.605-612, June 2011.

International conference papers (with peer review)

1. Y. Endo, H. Toda, K. Nishida, and A. Kawanobe: “Deep Feature Extraction from Tra-
jectories for Transportation Mode Estimation,” In Proc. of Pacific Asia Conference
on Knowledge Discovery and Data Mining (PAKDD) 2016, pp.54-66, Auckland,
Apr. 2016.

8

2. Y. Endo, H. Toda, and Y. Koike: ”What’s Hot in The Theme: “Query Dependent
Emerging Topic Extraction from Social Streams,” In Proc. of World Wide Web 2015
Companion, pp.31-32, Florence, May 2015.

Domestic conference papers (with peer review)

1. S. Iizuka, Y. Endo, Y. Kanamori, J. Mitani: “Reproduction of Weathering with Tex-
ture Variations on Object Surfaces in Images,” VC/GCAD Symposium2016, pp.1524
- 1536, 2016 (in Japanese).

2. Y. Endo, H. Toda, K. Nishida, and Y. Koike: “Feature Extraction from GPS Trajec-
tories Using Representation Learning for Transportation Mode Estimation,” WebDB
Forum 2014, 2016 (in Japanese).

3. S. Iizuka, Y. Endo, J. Mitani, Y. Kanamori, and Y. Fukui: “Interactive Layered 3D
Model Generation from Single Image Using Scribbles,” VC/GCAD Symposium 2013,
2013 (in Japanese).

4. S. Iizuka, Y. Endo, M. Hirose, J. Mitani, Y. Kanamori, and Y. Fukui: “Interactive
Object Repositioning on Scene Images Considering Scene Depth,” VC/GCAD Sym-
posium 2012, 2012 (in Japanese).

5. S. Iizuka, Y. Endo, J. Mitani, Y. Kanamori, and Y. Fukui: “Pop-up Card Design
Support System Using Physical Simulation,” VC/GCAD Symposium 2011, 2011 (in
Japanese).

Domestic conference papers (without peer review)

1. Y. Endo, K. Nishida, H. Toda, and H. Sawada: “Destination Prediction Considering
Long-term Dependency,” Multimedia, Distributed, Cooperative, and Mobile Sympo-
sium (DICOMO2016), pp.1524 - 1536, 2016 (in Japanese).

2. S. Takimoto, K. Nishida, Y. Endo, H. Toda, H., Sawada, Y. Ishikawa: “Personalized
Destination Prediction Considering Time of Day,” Forum on Data Engineering and
Information Management(DEIM2016), 2016 (in Japanese).

3. M. Kawano, Y. Endo, H. Toda, Y. Koike, K. Ueda: “Automatic Feature Extraction
from Movement Trajectories Using Recursive Autoencoder,” Forum on Data Engi-
neering and Information Management (DEIM2015), 2015 (in Japanese).

4. Y. Endo, H. Toda, S. Suzaki: “Query-dependent Local Emerging Topic Extraction
on Time Series Texts,” Forum on Data Engineering and Information Management
(DEIM2014), 2014 (in Japanese).

9

Technology reports of University of Tsukuba (without peer review)

1. S. Iizuka, Y. Endo, M. Hirose: “Interactive Scene Image Editing System Considering
3D structures,” Advanced Research and Development Solution Projects Report 2011,
2012 (in Japanese).

2. S. Iizuka, Y. Endo: “Pop-up Card Design Support System Using Mass-Spring Model,”
Advanced Research and Development Solution Projects Report 2010, 2011 (in Japanese).

1.4.3 Grants and awards
First Author

1. July 2016: Paper award, in the 2016 Multimedia, Distributed, Cooperative, and Mo-
bile Symposium.

2. May 2016: Grants for Researchers Attending International Conferences from NEC
C&C Foundation.

3. March 2016: IPSJ Yamashita SIG Research Award from Information Processing So-
ciety of Japan.

4. December 2015: Research and Development Encouragement Award from NTT Ser-
vice Innovation Laboratory Group.

5. November 2014: Paper award, in WebDB Forum 2014.

6. March 2013: IPSJ Yamashita SIG Research Award from Information Processing So-
ciety of Japan.

7. February 2012: GCAD award, in 146th GCAD.

8. July 2010: GCAD award, in 139th GCAD.

9. June 2010: GCAD award, in VC/GCAD Symposium 2010.

Coauthor

1. May 2016: Paper Award, in the 8th Forum on Data Engineering and Information
Management.

2. October 2015: Highest Award, pedestrian movement support ideathon and hackathon
hosted by Director-General for Policy Planning, Ministry of Land, Infrastructure,
Transport and Tourism.

10

3. March 2015: Student presentation award, in the 7th Forum on Data Engineering and
Information Management.

4. June 2013: GCAD award, in VC/GCAD Symposium 2013.

5. June 2011: GCAD award, in VC/GCAD Symposium 2011.

11

Chapter 2

Related Work

In this chapter, we explain existing studies for reproducing real-world appearance variations
using CG techniques. We also explain related work of edit propagation for mask extraction
and briefly introduce deep learning related to our method.

2.1 Reproduction of Real-world Appearance Variations

2.1.1 Time-varying appearance variations
Realistic representation of weathering and aging phenomena has been an important theme
in the field of computer graphics. The previous methods can be broadly grouped into
example-based approach that obtains information from real photographs and simulation-
based approach that handles specific targets such as rusts, cracks and dirt. Here we briefly
introduce some of them, and refer to the survey paper by Merillou et al. [59] for more
information.
Simulation-based approach: Physically-based simulations of weathering and aging have
been applied to various targets such as stones [25], paint peeling [63], cracks of clay-like
materials [37] and wooden materials [100]. These methods are accompanied by geometric
changes. Previous methods that do not handle geometric changes include weathering and
aging by dust [38], rust [26] and moss [24].

Dorsey et al. [27] employed a particle simulation to reproduce stains caused by flows
streaming on 3D models. In their method, particles dissolve and carry deposits, and the
deposits are accumulated on the surface according to a set of partial differential equations.
Their method can represent various patterns of realistic stains by tuning parameters, but
lacks flexible control for designing stains. On the other hand, our simulation scheme is a
modified version of Dorsey et al.’s method specialized for 2D image editing, and collabo-
rates with the user interface for designing water flow stains.
Example-based approach: There are many techniques to change the appearance of ob-

12

jects in images, such as retexturing objects with arbitrary textures [29, 101], and creating
translucent or specular objects rendered with arbitrary bidirectional distribution functions
(BRDFs) [40]. However, these methods do not take into account the time-varying appear-
ance due to weathering.

Gu et al. [35] obtained and modeled time-space varying bidirectional distribution func-
tions (BRDFs), and then reproduced temporal variations of materials. Wang et al. [84]
constructed a manifold that represents the temporal variation of a material using BRDFs
measured at various points on the material in order to reproduce the transition of com-
plicated texture patterns. However, these techniques cannot be applied to a single image
because of the requirement of captures of full time sequences.

Xue et al. [95] applied Wang et al.’s method to objects in 2D images to synthesize the
weathered or de-weathered appearance. Although example-based approaches successfully
reproduce various texture patterns, they suffer from handling physical properties of the
target objects because they do not account for the physical law of the phenomena. Their
method can not only achieve realistic results but also be applied to images including com-
plicated shading variations. Later Bandeira and Walter [5] used an appearance map, a
simplified version of an appearance manifold, for real-time editing. Despite faster compu-
tation time, the method of Bandeira and Walter can achieve sufficiently realistic weathering
effects. However, these methods cannot handle time-varying geometric details caused by
weathering. Recently, Bandeira and Walter [6] tackled this problem by using normal map-
ping. Their approach seems to succesufully reproduce the examples of cracks. However,
the propagation of cracks is separately handled without using weathering degrees, and thus
their method cannot handle the cases where both shading and reflectance change simultate-
nously according to de/weathering.

2.1.2 Optical appearance variations
There have been many image matting methods for optical appearance variations. Wu et
al. [88] extracted shadows from natural images, assuming the colors in a shadowed region
are the products of the shadow color and the ground colors, based on Retinex. Similarly,
haze removal techniques assume that an input image is a linear blending of the haze color
and background colors. Tan’s method [80] enhances the image contrast, and does not
decompose the image. Fattal [31] estimates a uniform haze color as well in dehazing by
assuming that the transmission and surface shading are locally uncorrelated. In our case
this statistical approach will suffer from reflection regions where the transmission color is
dominant or a sky without shading is largely reflected. Methods using the dark channel
prior [36, 42] are based on the assumption that in natural images at least one color channel
tends to be almost zero, which is not valid in regions where a blight sky is reflected in
our case. Most importantly, applying these methods to our case is not trivial due to the
difference of targets.

Methods for natural image matting, as introduced in a survey [83] and the evaluation

13

website of [71], extract foreground objects and an alpha matte from a single image, assum-
ing that the user specifies definitely-foreground and definitely-background regions using a
trimap or scribbles. Unfortunately, such definite separation is not available in reflection
images, and thus we require alternatives.

While a basic way of reproducing reflection/refraction is the use of ray tracing with
3D geometries, several methods do so without geometric information. Environment mat-
ting [102, 19, 86, 65] measures the light transport for an reflective/refractive object in the
real world using specialized devices or multiple photographs. Khan et al. [40] proposed a
method that can change the material of an object in a photograph as if it were made of metal
or glass, assuming that the input object is opaque and the depth can be estimated from the
luminance intensity. However, our target object is not opaque and its luminance intensity
does not provide depth information.

Yeung et al. proposed a matting method for separating glossy reflection and refraction
at a glass surface in an image [99]. In their method, the reflection component is limited to
white highlights that are extracted as definitely foreground in a trimap, and an alpha matte
as well as a warping function of refraction are calculated based on user-specified strokes.
We consider their method is the most relevant to our matting method. However, in our case,
the reflection component consists of a variety of colors and definitely-foreground regions
are not available. Additionally, it is impractical to manually specify small-scale warping
caused by a wavy reflection surface.

Separating reflection and refraction on a glass has been studied in computer vision.
Whilst some methods handle a single image [50, 49] and others multiple images [13, 33]
as input, here we introduce the former. The key idea here is that luminance edges belong
to either reflection or refraction components. However, an automated approach [50] cannot
achieve sufficient results in many cases and manually specifying edges [49] is labor inten-
sive. In our matting method, we do not handle complicated refraction but target a uniform
transmission color as observed in deep sea water or a non-textured table top.

2.1.3 Material editing based on human perception
Different from the modeling methods based on physical phenomenon, other methods that
simply adjust image statistics by considering human perception have been proposed. Mo-
toyoshi et al. [60] found that brightness and specularity of object surfaces that human per-
ceives depend on skewness of the histogram of the image. Sawayama et al. [73] proposed
a wet filter. The wet filter transforms objects to wet ones by changing the luminance his-
togram positively skewed and enhancing the color saturation. Boyadzhiev et al. [12] pro-
posed a method that can generate and remove several effects on human skin in images, such
as blemishes and oily skin. This method decompose input image into high-frequency and
low-frequency components and edits each component for any purpose. Although not all
appearance variations still can be handled by the methods that exploit human perception,
they can easily generate realistic materials through simple image processing operations.

14

Boyadzhiev et al.’s work is closely related to our sample-based weathering method pro-
posed in this thesis in that the both methods edit images on the basis of high-frequency and
low-frequency components.

2.2 Edit Propagation
The first studies related to edit propagation are colorizations using optimization [47] and
chrominance blending [98]. In addition to these approaches based on pixel colors, col-
orizations using texture features in manga [68] and natural images [58] have been also
proposed. Furthermore, we can regard tone adjustment [55], material editing [66], intrinsic
images [10] and editing of bidirectional texture functions (BTFs) [92] as applications of edit
propagation because they all propagate user edits based on similarities between on-stroke
pixels and the rest of the image. Such stroke-based approaches are also used in matting
[48, 72], edge-preserving smoothing [93, 16], and temporally consistent propagation for
video editing [14].

Other than the various applications, advances have been also made in the fundamental
algorithms for edit propagation. Li et al. proposed an approach using a gentle boost clas-
sifier by formulating edit propagation as a pixel classification problem [52]. AppProp [3]
yields better propagation by optimizing color differences for optimizing color differences
not only between nearby pixels, but also between non-neighboring ones. Computational
efficiency has been also improved by using a kd-tree [91], continuously approximating
feature space using radial basis functions (RBFs) [53], manifold learning [61], efficient
stroke sampling [9], and sparse pixel sampling [97]. Most of the previous approaches share
a common issue, namely that halo artifacts occur across object boundaries [45]. Chen
et al. [45] achieved graceful color blending along object boundaries based on locally lin-
ear embedding (LLE), which was further improved in terms of efficiency using dictionary
learning [14]. Xu et al. proposed a stochastic modeling of the similarities between on-
stroke and off-stroke pixels, based on iterative feature discrimination and sparse sampling
of on-stroke pixels [94]. Also, there are approaches using specific distance metrics such
as geodesic distance [20] and diffusion distance [30]. Whereas these previous approaches
use various image features, effective features vary depending on input images and user-
specified strokes. Therefore, if multiple image features are considered simultaneously, we
have to tune the importance that enhances or suppresses each feature for each image. Even
worse, the more image features are used, the more over-fitting occurs.

2.3 Deep Learning
Recently, deep learning has gained significant attention in computer science. Deep learn-
ing is a generic term for techniques using deep neural network (DNN), and has achieved

15

outstanding results in various fields. An advantage of DNN is that it can be used for rep-
resentation learning, where low-level features (e.g., pixel values) are directly used as input
and automatically converted to higher-level features through intermediate layers, without
conventional manual design of discriminative features. A commonly occurring problem is
that of vanishing gradients of the energy functions, which hinders deep layers from suffi-
ciently learning effective features, especially in deeper neural networks. Recent progress
including the unsupervised pretraining with deep belief network (DBN) [8] and the use of
rectified linear unit (ReLU) [34] as well as performance improvement of computers in the
last few years have enabled efficient learning using DNN.

With regards to the types of neural networks used for deep learning, fully-connected
neural network, convolutional neural network (CNN) and recurrent neural network (RNN)
are commonly chosen [7]. Fully-connected neural networks such as multilayer perceptron
(MLP) are typical examples in DNN and have been applied to classification and regres-
sion problems in several research fields (e.g., speech recognition [43, 23], activity recog-
nition [44], and exemplar-based photo adjustment [96]). On the other hand, CNNs are
often used if the inputs are images. Unlike general fully-connected networks, a CNN is a
network consisting of convolutional layers with multiple filters and pooling layers, which
enables CNN to achieve invariant features (e.g., shift invariance) under various deforma-
tions during feature extraction. CNNs have been applied to many image processing tasks,
such as image classification [90], contour detection [76], motion deblurring [79], saliency
detection [51], and depth estimation [56]. We adopt a combination of a CNN and a fully-
connected network for edit propagation for the first time, and demonstrate its effectiveness
through several applications.

16

Chapter 3

Reproduction of Water Flow Stains

Photorealistic reproduction of weathering and aging phenomena often plays an important
role in the field of film production and scene prediction. Especially, weathering and aging
of buildings, e.g., rusts, stains and pollution caused by rainfalls, chemical reaction, ultra-
violet light and other various factors, have high demand because buildings are ubiquitous
in our daily lives and thus might look unnatural without such phenomena. A usual way
to seek such realism is to use photographed materials as texture images and edit them to
obtain desired results. However, looking for appropriate materials itself is not easy, and
editing materials requires labor-intensive work as well as professional skills.

In this chapter, we focus on a salient aging effect, stains by water flows, and present
a system that allows the user to add such stains directly and easily onto building walls in
outdoor images. Our system represents a water droplet with a particle and simulates the
dissolution, transport and sedimentation of deposits using particles in the regions specified
by the user. This simulation scheme is based on a simple model proposed for 3D models by
Dorsey et al. [27], but we modify it to improve the performance and the usability for im-
age editing. In the simulation, realistic and complex stains can be obtained by accounting
for the surface roughness where water flows. The user can specify the initial and terminal
positions of particles by drawing a few lines. Furthermore, the user can adjust the amount
of deposits according to the perspective in the image; using a pair of auxiliary lines drawn
by the user, our system makes water flow stains shorter and thinner as the distance from
the viewpoint gets longer. The quick feedback of the simulation enables interactive manip-
ulation. We demonstrate the effectiveness of our system through various results and user
evaluations.

3.1 User Interface
This section describes our prototype system for designing images containing water flow
stains. Our system adds such stains using particle simulations, and allows the user to easily

17

specify the regions where the water particles flow on the input image.
Figure 3.1 shows the screenshot of our prototype system. In the left window that dis-

plays the input image and flowing particles (blue), the user can directly specify the regions
for simulation and the perspective of the input image, and then obtain simulated results
quickly. In the right window, the user can configure the parameters and other settings of
the simulation. In the middle panel, the user can select the color of deposits using either of
the color pallet, color chooser or color picker. The current color is displayed at the bottom.

Figure 3.1: Screenshot of our system.1

3.1.1 Control lines
In the left window in Figure 3.1, the user specifies two types of control lines and a control
mesh to control the particle simulation (Figure 3.2);

Source line

(the blue line in Figure 3.2(a)): to specify the initial position of particles. Particles are
emitted from these lines.

1Author of the input image: heavymoonj
URL: http://www.flickr.com/photos/heavymoonj/261996484/

18

Terminal lines

(the green lines in Figure 3.2(a)): to specify the positions where the simulation terminates.
Particles are removed when they touch these lines.

Control mesh

(the green mesh and red control points in Figure 3.2(b)): to specify the perspective of the
input image. The amount of deposits is adjusted according to the perspective of the input
image, specified by these lines. See Section 3.2.2 for more details.

Source

Line

Termination

Lines

(a)

Control

mesh

(b)

Figure 3.2: Two types of control lines and a control mesh for the particle simulation. (a)
The blue line specifies the source position of particles, and the green lines represent the
terminal positions; particles are removed when they touch these lines. (b) The perspective
of the input image is specified by the control mesh in order to adjust the amount of deposits
according to the perspective.

3.1.2 Simulation parameters
The user can adjust the following six parameters to make a variety of water flow stains
using scroll bars. The way each parameter influences the simulation is described in Section

19

3.2.2.

Water Amount.

The parameter for the water amount specifies the number of particles. By increasing this
parameter, more complex stains caused by more flows can be obtained (Figure 3.3).

Figure 3.3: Effect of Water Amount.

Particle Size.

The relative size of particles with regard to the input image can be adjusted using this
parameter (Figure 3.4).

Figure 3.4: Effect of Particle Size.

Absorptivity.

This parameter specifies the rate with which the mass of each particle decreases. The flow
distance of each particle becomes short by increasing this parameter (Figure 3.5).

20

Figure 3.5: Effect of Absorptivity.

Surface Roughness.

This parameter determines how much each particle is diffused and decelerated due to the
bumps on the surface. By increasing this parameter, more deposits tend to accumulate at
cracks and ditches (Figure 3.6).

Figure 3.6: Effect of Surface Roughness.

Deposition Amount.

This parameter specifies the amount of deposits attached on the surface. A large value
yields thick stains (Figure 3.7).

Deposition Resolvability.

This parameter determines how easily deposits dissolve in water particles. A large value
yields a blurred image (Figure 3.8).

21

Figure 3.7:Effect of Deposition Amount.

Figure 3.8:Effect of Deposition Resolvability.

3.2 Simulation Scheme
This section describes the simulation scheme to control water particles. Our scheme is
based on Dorsey et al.’s model [27] because of its simplicity. In their model, each particle
represents a water droplet that dissolves and transports deposits which are then accumu-
lated along the tracks of particles. While their model targets the 3D space, we simulates
on the 2D domain, i.e., the input image. We simplify their model to reduce the number of
parameters and to provide faster feedback to the user. Furthermore, we extend it to handle
the surface roughness on which particles flow and to adjust the amount of deposits accord-
ing to the perspective of the image. In the following subsections, we first describe Dorsey
et al.’s model briefly, and then elaborate on our model.

3.2.1 Dorsey et al.’s model
In Dorsey et al.’s model, a particle represents a water droplet parameterized by the mass
m, position x, velocity v, and the amount of dissolved deposits S. Particles are initially

22

assigned on the surface of a 3D model at random by a rainfall, and then flow downward
under the influence of the gravity and frictions. Particles interact with each other due to the
repulsive forces among them. Water is absorbed into the object surface, and thus the surface
also has a set of parameters, namely, the surface roughness r, the amount of absorbed water
w, the rate for absorption ka, the saturated amount of absorption a, and the amount of
sediment D. Regarding the deposits carried by water particles, there are attributes such
as the adhesion rate constant kS , the solubility rate constant kD, the evaporation rate Isun,
and the initial deposition amount on the surface ID. Dorsey et al.’s model uses a scalar
surface roughness r or a displacement map on the surface in order to obtain the interesting
movement of particles; the roughness makes particles disperse whereas the displacement
map let particles move slowly across a bumpy surface, yielding more sediment along cracks
and valleys. Consequently, the absorption of water is modeled as follows;

∂m

∂t
= −ka

a− w

a

A

m
, (3.1)

∂w

∂t
= ka

a− w

a

m

A
− Isun, (3.2)

where t denotes the simulation time and A is the diameter of the water particle. Similarly,
the solution and sedimentation of deposits are modeled as follows;

∂S

∂t
= −kSS + kDD

m

A
, (3.3)

∂D

∂t
= kSS

A

m
− kDD + ID. (3.4)

When the mass m becomes smaller than a certain threshold, the particle is removed from
the simulation.

3.2.2 Our simulation model
Basic Modifications to Dorsey et al.’s Model.

As described above, we modify Dorsey et al.’s model for interactive simulations on a 2D
image. We define the xy coordinate system along the horizontal and vertical edges of
the image. To accelerate the simulation, we ignore the interaction among particles and
frictions but only consider the gravity. According to Eq. (3.1), (3.2), (3.3) and (3.4), the
variations of the mass and amount of absorbed water depend on the diameter of particles,
which means the “thickness” of the deposit color changes according to the diameter. This
is not desirable for our purpose because we want to control the “thickness” only by Id (i.e.,
Deposition Amount in Section 3.1.2), and thus we omit m/A and A/m from the equations.
In Eq. (3.3) and (3.4), we set the range of kD and kS [0, 1], and let kS = 1− kD to reduce
the number of parameters. The user can control ka and kD as Absorptivity and Deposition
Resolvability respectively, as described in Section 3.1.2.

23

Displacement due to Luminance Variations.

As shown in Figure 3.9(a), the luminance values change greatly in general across cracks
and valleys in images. Therefore, we construct the displacement map from the variations of
the luminance values in the input image, and use the surface roughness r as a coefficient to
amplify the influence of the map. The particle velocity v = (vx, vy) is reduced according
to the variations of the luminance values;

vdiffusex = b r ξ My(x), (3.5)
∂vx
∂t

= vdiffusex − vx
Mx(x)

rmax − r + 1
, (3.6)

∂vy
∂t

= −vy
My(x)

rmax − r + 1
, (3.7)

where Mx(x) and My(x) are the horizontal and vertical variations of luminance values at
particle position x, b is a constant, ξ ∈ [−1, 1] is a random value, and rmax is the maximum
of r. The user can control r as Surface Roughness as described in Section 3.1.2. Figure 3.9
shows the results (c) with and (b) without accounting for the surface roughness. Compared
to Figure 3.9(b), Figure 3.9(c) exhibits more sedimentation along the ditches, which makes
the result look much more realistic.

(a) (b) (c)

Figure 3.9: Simulation results (c) with and (b) without accounting for the displacement
defined by the variations of luminance values in (a) the input image.

Adjustment to the Perspective in the Image.

Inspired by Eisenacher et. al ’s texture synthesis method [28], we use a control mesh on
a surface on an object to reproduce water flow stains according to perspective on input
image. The control mesh is represented as a curved or rectangular surface, and its shape is
deformed by moving multiple control points of a Bézier patch. We empirically use a cubic

24

Figure 3.10: The upper right: control mesh. The lower left: visualized results of ρ(x) on
the depth map calculated from each control mesh. The maps are rectangle because these
are defined in a parameter space. The darker the locations, the father from the viewpoints

Bézier patch consisting of 4 × 4 control points because a user can easily and flexibly edit
the control mesh using the appropriate number of control points. Specifically, the cubic
Bézier patch is formulated as follows:

S(u, v) =
3∑

j=0

3∑
i=0

bijB
3
j (v)B

3
i (u) (0 ≤ u, v ≤ 1), (3.8)

where b is the coordinate of the control points, and B3 is cubic Bernstein Basis Polynomi-
als.

A user specifies the control mesh as follows; First, the user moves the four-cornered
control points in order to globally adjust the effect of perspective. In this process, the other
control points are automatically positioned according to the adjusted perspective effect. In
particular, a 3 × 3 homography matrix is computed on the basis of the coordinates of the
original four-cornered control points and moved control points, and then the coordinates of
the other control points is computed by multiplying the original control points by the ho-
mography matrix (see the left in Figure 3.10). Finally, to fit the control mesh to the curved
surface, the control points are individually moved as shown in the right in Figure 3.10.

While water flow stains are reproduced on an object surface according to a Bézier patch
in a simulation space, actual particle coordinates is computed in a parameter space and then

25

Parameter space u = (u, v) Simulation space x = (x, y)

Compute pixel

coordinates using

Jacobi matrix J

Figure 3.11: Particle simulation using the control mesh. The pixel coordinates of particles
on the simulation space is computed from the coordinates of the particles in the parameter
space using a Jacobi matrix J calculated from the adjusted control mesh.

projected onto the simulation space as shown in Figure 3.11. That is, particle coordinates
x = (x, y) = S(u, v) in the simulation space is computed from the coordinates u = (u, v)
in a parameter space. Particle coordinates in the simulation space can be computed using
Equation (3.8). However, this procedure on each timestep of simulation is too heavy. To
reduce time complexity, we compute particle coordinates in the simulation space using a
Jacobi matrix J obtained from Equation (3.8) as follows:

x(u) = x(u′) + J(u)(u− u′), (3.9)

J(u) =

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
, (3.10)

where u′ denotes particle coordinates in the parameter space at a previous timestep.
In this simulation scheme, we need to refine a displacement map according to a control

mesh because the velocity of particles depends on the displacement map. For this pur-
pose, we generate a displacement map in a parameter space based on the control mesh. In
particular, we compute the variation of pixel intensity on each coordinate in a parameter
space on the basis of the correspondence between coordinates in simulation and parameter
spaces. Then the velocity of particles are obtained from Equations (3.5) and (3.7) using the
displacement map.

Note that the farther the view point from the water flows, the thinner the water flows
seem. However, this fact is not considered in above-mentioned simulation scheme based
on a control mesh. Besides, when particles exist on denser regions of a control mesh, they

26

(a) (b)

Figure 3.12: Comparison of the results without (left) and with (right) using control mesh.

stay on the same pixels for a longer time, and thus the amount of stains becomes larger.
Essentially, the amount of stains must not depend on the distance between the target and
viewpoint.

To address this issue, we adjust the amount of stains and size of particles according to
intervals between cells in a control mesh. These parameters are automatically adjusted by
multiplying each parameter and a coefficient ρ(x) based on Jacobian det(J(x)) that can be
used to estimate intervals between cells:

ρ(u) =
| det(J(u))|

max
0≤u,v≤1

{| det(J(u))|}
, (3.11)

where ρ(u) takes a value within the range of [0, 1]. The lower left images in Figure 3.10
illustrate the visualization results of ρ(u) in parameter spaces based on the control meshes
in the upper right. Darker locations mean smaller ρ(u) and farther ones from a viewpoint.
The results show that coefficients can be appropriately computed according to perspective
on rectangular and curved surfaces.

Figure 3.12 shows results with and without using a control mesh. In the former results,
the water flow stains uniformly adhered to the wall. In contrast, in the latter results, the
water flow stains adhered to the wall according to the perspective.

3.3 Results
We implemented our prototype system using C++ language, OpenGL and GLUI, and ex-
ecuted our system on a PC with a Xeon 2.66GHZ, 2GB RAM, and an NVIDIA Quadro
FX 3450 graphics card. Figure 3.13 shows the resultant images with water flow stains syn-
thesized using our system. The user succeeded to design realistic stains within moderate

27

(a) (b) (c) (d)

(e) 2 (f) (g) 3 (h)

Figure 3.13: (b)(d)(f)(h) Synthesized images with water flow stains using our system. The
image sizes of their inputs are (a) 500×375, (c) 512×384, (e) 452×491, and (g) 300×500
pixels. The times for editing are about (b) 3 min, (d) 10 min, (f) 4 min, and (h) 5 min.

time. Figure 3.14 shows the resultant images without and with applying the control mesh
to the curved surface. As can be seen in these results, it is obvious that the control mesh
was effective for generating natural water flow stains according to the curved surface.

Regarding the time for editing, the user generally spent the most of time in tuning
parameters. As the image size becomes larger, the time for simulations takes longer as
shown in Figure 8. We believe that the time for simulations will be much shorter using
minified images and GPU implementation in future work.

User Test.

To validate the effectiveness of our system, we performed a user test to compare its perfor-
mance to the Adobe Photoshop R⃝. Six students, all novice users of our system and image
editing software, participated in the study. After a brief tutorial, each subject was asked to
synthesize water flow stains on the tile image (Figure 3.17(b)) in reference to the stained

28

tile image (a real photograph, Figure 3.17(a)), using either our system or the alternative
software (Photoshop). The testing order of the software was alternated between subjects;
three used Photoshop first, and the other three used our prototype system first. The subjects
were allowed to work on the task until satisfied, for up to 20 minutes. Figure 10 shows
some of the resulting images. Figure 3.16(a) shows the time of design process across six
subjects and two design tools. Subjects using our system overall took less than 70% of the
time when they did using Photoshop. Figure 3.16(b) shows the subjective evaluation of the
produced images. Ten people voted on the resulting images, regarding how natural each
image is. While a paired t test of the operation time does no show statistical significance,
a binomial test of the scores shows that our system performed better than the Photoshop in
making water flow stains.

2Author of the input image: new hobby
URL: http://www.flickr.com/photos/newhobby/2427677211/

3Author of the input image: peterjr1961
URL: http://www.flickr.com/photos/peterjr1961/3506811726/

29

(a) (b)

(c) (d)

Figure 3.14: The resultant images without (c) and with (d) applying the control mesh (b)
to input image (a).

30

(a) 256× 192, 0.35 sec (b) 500× 375, 3.5 sec (c) 1024× 768, 9.9 sec

Figure 3.15: Resultant images with different image sizes for the same scene as Figure 3.3.
The image size and simulation time for a single execution are listed under each image.

(a) Time for operations (b) Votes on the qualities

Figure 3.16: Graphs summarizing the results of a user test. Each of six subjects was asked
to synthesize two images, one using our system and the other using Photoshop, so that
the images became satisfying for the subject. (a) shows the time of design process across
six subjects and two design tools. (b) Then ten people voted on the result, regarding how
natural each image is. The number represents that of votes for each system.

31

(a) Reference example (b) Given image

(c) Our system＃ 1 (d) Our system＃ 4 (e) Our system＃ 6

(f) Photoshop＃ 1 (g) Photoshop＃ 4 (h) Photoshop＃ 6

Figure 3.17: Results of the user test, comparing our system to Photoshop. The users were
presented (a) a reference example (a real photograph) and asked to edit (b) a given image
until the user gets satisfied. The middle row (c)(d)(e) presents the results by different users
using our system whereas the bottom row (f)(g)(h) shows those using Photoshop.

32

Chapter 4

Example-based Weathering with
Geometric Details

Outdoor objects in the real world change their appearance due to weathering over time. For
example, metals get rust, paints get peeled, and stones become mossy. Reproduction of
such weathering phenomena is very important to enhance the reality of object appearance
in computer graphics.

Whereas there have been many techniques that handle weathering of 3D models, there
are only a few for objects in 2D images. Recently, Xue et al. [95] as well as Bandeira and
Walter [5] proposed methods for reproducing weathering in images. Both of their methods
construct the models of the time-variant appearance of objects, appearance manifolds [95]
or appearance maps [5], and calculate the distribution of weathering degrees in the image
based on the models. The weathering degrees are then used to decompose the image into
reflectance and illuminance, which is often interpreted as shading in this context. Con-
sequently, de/weathering is accomplished by changing only the reflectance according to
weathering degrees while the illuminance (shading) remains unchanged. This framework
allows applications to objects with complicated shading, but cannot handle time-varying
shading due to weathering, that is, shading caused by time-varying geometric details of
rust, peeled paint or moss. Another concern on these methods is the usability. While these
methods are not physically accurate, they produce plausible results to some extent. How-
ever, any user interface that allows local and interactive editing is not provided.

In this chapter, we propose a technique for modeling weathering effects with time-
varying geometric details in images. Specifically, we focus on spatio-temporal variations
of shading as well as reflectance due to weathering. We extract fine-scale details of shading
as high-frequency components of the shading image, and add them onto object surfaces as
weathering progresses. This extraction can be done with only a few additional user inputs.
De/weathering with time-varying shading is accomplished in our work for the first time,
and substantially enhances the reality of de/weathering effects as shown in Figure 4.1.
Moreover, we introduce a brush-like user interface for editing weathering effects locally

33

and interactively. This interface allows the user to edit arbitrary weathering distributions,
for example, similar to those observed in the real world.

4.1 The Method of Bandeira and Walter
Similar to Xue et al.’s method [95], Bandeira and Walter’s method [5] models an input
image as the product of reflectance and illuminance, and assumes that only the reflectance
changes due to weathering phenomena.

To decompose an input image into reflectance and illuminance, they use Lab color
space that allows to handle luminance (L) and chroma (ab) separately. They assume that
chroma values of illuminance are constant and chroma values of reflectance are given as ab
channels of each pixel. On the other hand, luminance values of reflectance and illuminance
are modeled as follows.

Il(i, j) = Wl(i, j)× S(i, j) (4.1)

where i and j are horizontal and vertical coordinates of each pixel, Il is a luminance
value of the image, Wl is a reflectance luminance value represented as the weathering
component, S is an illuminance luminance value represented as the shading component.
The reflectance luminance values Wl are computed based on a weathering degree map.

The weathering degree map is calculated with an appearance map that is constructed in
advance based on the least weathered point and the most weathered point selected by the
user. Weathering degree values are within the range of [0, 1] where 0 indicates the least
weathered and 1 indicates the most weathered.

The reflectance luminance values are the average of luminance values of pixels whose
weathering degrees are almost the same. The illuminance luminance values are calculated
as S(i, j) = Il(i, j)/Wl(i, j). After the decomposition, the weathering degree map is
updated, and then the deweathered or weathered reflectance values are computed with the
appearance map and the weathering degree map. Finally, a resulting image is obtained by
combining reflectance with illuminance.

4.2 Modeling Weathering Effects with Geometric Details
We handle de/weathering effects where both illuminance (shading) and reflection change
simultaneously. Following the method of Bandeira and Walter [5], the region of interest
(ROI) in the input image is decomposed into illuminance and reflectance based on a weath-
ering degree map computed with the appearance map (see Figure 4.3).

The left image in Figure 4.2 shows a photograph of a rusting iron surface, where not
only reflectance but also shading varies due to the geometric variations. The right image
in Figure 4.2 illustrates the intensity plots along a scanline of illuminance (shading) in the

34

Figure 4.1: Example images of rust effects. Top left: the input image. Bottom left: a
resultant image by Bandeira and Walter [5]. Bottom right: a resultant image by our method,
with geometric details caused by rusting. Each magnified figure is shown at the top right.

35

Weathered region

Pixels

In
te

n
si

ty

Figure 4.2: A typical example of the fact that weathered regions often become rough. Left:
A photograph of a rusting surface. Middle: illuminance of the left image. Right: intensity
plots along a red scanline of illuminance.

Input image Reflectance W Illuminance S

Figure 4.3: Decomposition of the input image into reflectance and illuminance.

36

middle image in Figure 4.2. The high-frequency pattern found here is typical in weathered
regions in images.

We assume that the geometric variations caused by weathering are represented as high-
frequency components in shading. As a preprocess, we extract the high-frequency patterns
and fill the ROI with the patterns using a texture synthesis method. Then, we add these
synthesized patterns onto illuminance according to the updated weathering degrees. Re-
flectance is also calculated similary to Bandeira and Walter’s method [5]. Finally, we ob-
tain resulting images by multiplying reflectance and illuminance. In the following sections,
we describe each of these steps in detail.

4.2.1 Extraction of shading details
Given an illuminance image S, we decompose S into coarse features and fine features
using a multi-scale image decomposition presented by Subr et al. [78]. Because this de-
composition can separate the fine texture from shading if the texture and shading are of
different scales, it works well for our purpose of extracting the high-frequency patterns.
The illuminance image S is decomposed into coarse features Sc and fine features Sf as
follows:

S(i, j) = Sc(i, j) + Sf (i, j) (4.2)

The decomposed result is shown in Figure 4.4.

4.2.2 Texture synthesis
. To fill the ROI with extracted high-frequency patterns, we employ a texture synthesis
algorithm by Ashikhmin [4]. This algorithm runs very fast and constructs results that often
look good. Although it sometimes brings abrupt discontinuity depending on an input tex-
ture, it suffices for our purpose because the input texture in our case is just a rough pattern
that does not require continuity.

The synthesis process is shown in Figure 4.5. To ensure that the source texture pat-
tern is obtained only from the weathered region, we calculate a binary mask M from the
weathering distribution map d.

M(i, j) =

{
1 (d(i, j) ≥ t)
0 (d(i, j) < t)

(4.3)

where t denotes a weathering threshold. We found t = 0.5 worked well for our experi-
mental results. The source texture pattern is sampled from regions where M(i, j) = 1 in
order to obtain synthesized fine features S ′

f . Note that the binary mask may contain non-
weathered regions if the weathering degree map is constructed inaccurately, resulting in a
failure of texture synthesis. This problem can be avoided by letting the user to manually

37

Illuminance S Fine features Sf Coarse features SC

Figure 4.4: Decomposition into coarse features and fine features.

specify a rectangular region in which the binary mask is construcated and the source tex-
ture is sampled. Fortunately, such additional user input is not required in most cases by
setting the rectangular region around the most weathered point specified when constructing
the appearance map.

4.2.3 Weathering with geometric details
After the preprocess described above, the resultant illuminance is computed with the syn-
thesized fine shading components S ′

f , the initial illuminance S, the initial weathering de-
gree map d and the updated weathering degree map d′ as shown in Figure 4.6. The fine
components are added to the regions where weathering progresses to a certain extent:

S ′(i, j) =

{
S(i, j) + S ′

f (i, j) (d′(i, j)− d(i, j) ≥ t)
S(i, j) (d′(i, j)− d(i, j) < t)

(4.4)

On the other hand, the reflectance variations are calculated using the appearance map
according to the weathering degree for each pixel. Finally, a resutant image with detailed
shading is obtained by mutiplying the shading and reflectance values.

4.2.4 Deweathering with geometric variations
We also try deweathering taking into account the geometric variations, i.e., recovery of
the original surfaces of objects before going through weathering. This is a challenging
task in general because the original surfaces are unknown. In contrast to weathering de-
scribed in Section 4.2.2, we synthesize the high-frequency components of illuminance in
non-weathered regions, hence we invert the mask: M ′(i, j) = 1 −M(i, j). Because non-
weathered regions are often smooth, the resultant illuminance also tends to be smooth.

38

The region selected by the user

Fine features of illuminance Sf

Weathering

degree map

(default) d

Synthesized fine features S’f

Texture

Synthesis

Figure 4.5: An outline of the synthesis. Fine features of illuminance are synthesized in a
weathered region based on a weathering degree map.

Using the synthesized components S ′
f , the resultant illuminance is defined as:

S ′(i, j) =

{
S(i, j) (d′(i, j)− d(i, j) ≥ t)
Sc(i, j) + S ′

f (i, j) (d′(i, j)− d(i, j) < t)
(4.5)

A comparison of deweathering effects between the previous method [5] and our method
is shown in Figure 4.7. We could eliminate geometric details caused by weathering to
some extent. Here our approach assumes that the original surfaces are smooth; otherwise
separating the fine-scale geometries from the original surface becomes quite difficult unless
extra knowledge is provided.

4.3 Weathering Transfer with Geometric Details
Our method can be used for weathering transfer between one image to another, taking into
account the geometric variations. For explanation, we use the terms ‘source’ and ‘target’
to distinguish the source of weathering effects and the target to be modified, respectively.
Reflectance is calculated using the appearance map for each of source and target images,
similar to Bandeira and Walter [5]. To transfer shading variations, we prepare the synthe-
sized fine components and the binary mask of the source image. The weathering effects in
the source image is then transferred according to the weathering degree map of the target
image.

39

Weathering

degree map

(default) d

Weathering

degree map

(Weathered) d’

Synthesized

fine features S’f
Illuminance S

Reflectance

(weathered) W’

Illuminance

(weathered) S’

Resulting image

Figure 4.6: An overview of synthesis of weathering effects with geometric variations. The
weathered illuminance is calculated based on the weathering degree map and the synthe-
sized fine features. The resultant image is obtained by multiplying the precomputed re-
flectance and synthesized illuminance.

40

Figure 4.7: A comparison of deweathering processes. Left to right: the input image, a
deweathered result by Bandeira and Walter [5] and a deweathered result by our method.
Magnified images are shown at upper left of the resuls.

Alternatively, as an initial weathering degree map for the target image, we can use
the weathering degree map of the source image as well. In this case, we synthesize the
weathering degree map using Ashikhmin’s method [4] to adjust the map size to the target
image size, and use the synthesized map as an initial weathering degree map. This yields
good weathering effects similar to those in the source image, as shown in Figure 4.9.

4.4 A De/Weathering Brush Tool
Although the previous methods [5, 6, 95] can synthesize nice weathering effects, they can-
not emulate the real process of weathering faithfully due to the ignorance the physical laws.
Indeed, the speed of weathering is different by region due to the difference of exposure to
environmental factors such as rains or winds. However, finding out such information from
the input image is difficult.

We provide a brush tool that allows the user to locally edit de/weathering effects. The
user can select weathering or deweathering, and adjust the speed of de/weathering. The
user can intuitively edit weathering effects by drawing brush strokes.

For the progress of weathering effects within a brush stroke, we use the weathering
factor parameter Kw described in [5]. We set Kw = 0 for the outside of the brush and
Kw = 1 for the inside, or use a Gaussian fall-off for local weathering effects.

Figure 4.8 illustrates an example edited with our brush tool. We took a minute in the
designing session.

41

Figure 4.8: An editing result with our brush tool. The red circular regions are weathered
and the green circular region is deweathered. The side-by-side comparisons before/after
editing are shown above.

42

Figure 4.9: A result of weathering transfer with geometric details. To reproduce the weath-
ering distribution of the source material, we mapped a weathering degree map synthesized
from the source material onto the target object. Top left: the input image. Top right: the
source material. Bottom left: a weathered result. Bottom right: a more weathered result.

4.5 Results
Our implementation was written in C++, using OpenGL, GLUT and GLUI. We ran our
program on a PC with an Intel Core i7 2.80 GHz CPU and an NVIDIA Quadro FX 580
GPU. The input images we used in Figure 4.2, Figure 4.7, and Figure 4.9 were directly
taken from the paper of Xue et al. [95], and the others were downloaded from flickr
(http://www.flickr.com/).

The sizes of the input images and the time for preprocessing (Sections 4.2.1 and 4.2.2)
are shown in Table 4.1. Although the preprocessing took a few seconds, it does not matter
as it does not affect the editing process. The time required to update a weathering degree
map and to calculate reflectance and illuminance is almost the same as Bandeira and Wal-
ter’s method [5] because the additional process is just to incorporate the high-frequency
components that are synthesized in the preprocess. The time required for editing with our
brush tool relies on the brush size. The user could edit in real time using a rather large
brush with radius 400 pixels.

Figure 4.1 and Figure 4.10 show comparisons between our method and the previous
method [5] to reproduce rusting and mossy effects. The bottom left in Figure 4.10 was
locally edited with the brush tool. Note that in our results, the weathering effects with
geometric details look more realistic compared to the results by the previous method. Fig-

43

Figure 4.10: Comparisons of mossy effects. Left: input images. Middle: resultant images
by Bandeira and Walter [5]. Right: resultant images by our method.

Figure 4.11: Comparisons of rusting effects. Left: input images. Middle: resultant images
by Bandeira and Walter [5]. Right: resultant images by our method.

44

Table 4.1: The time (seconds) for preprocessing (Sections 4.2.1 and 4.2.2) required for
each image.

image size (pixels) time

Figure 4.1 260×320 4.26
Figure 4.7 280×348 3.32
Figure 4.9, transfer material 541×291, 174×189 2.41
Top left in Figure 4.10 265×333 4.31
Bottom left in Figure 4.10 409×318 5.39
Figure 4.11 637×421 7.77
Figure 4.12, transfer material 304×625, 131×147 1.67

ure 4.11 shows a comparison of deweathering effects of a rusting car. The geometric de-
tails of rust are smoothed out as well as the inherent shape is preserved in our method.
Figure 4.12 and Figure 4.9 show examples of weathering transfer with geometric details.
These also achieve good appearance, and the comparisons in Figure 4.9 demonstrates the
effectiveness of our method.

45

Figure 4.12: A comparison of weathering transfer. Left to right: a input image, a resultant
image by Bandeira and Walter [5], a resultant image by our method, and magnified images
(top: the previous method, bottom: our method).

46

Chapter 5

Reproduction of Reflection on Surfaces

Beautiful sights reflected on water surfaces of the sea or a lake are favorable photographic
subjects, as we see many on the Internet. Water surfaces can behave just like a flat mirror,
while wavy surfaces yield interesting warping in reflection images. Such effects are caused
by Fresnel reflection, which consists of a linear combination of reflected and transmitted
light. It can be also observed in our daily lives, e.g., on a table top or a glossy floor.

Editing photographs with such effects would be quite interesting, especially with reflec-
tion on wavy surfaces. Indeed, beautiful images/animations including reflection on wavy
surfaces can be created from a single photograph, with a plenty of manual labor [18, 64].
For semi-automating this making process, matting plays the key role; one first separates
the reflected image into a reflection component, transmission component, and alpha matte,
and then composite new objects using this information. However, matting is a challenging
problem because it is ill-posed, and applying previous matting methods for optical phe-
nomena (e.g., shadow [17, 88] and haze [80, 31, 36, 42]) to Fresnel reflection is difficult
due to the difference of targets and incompatibility of formulations. Additionally, the mat-
ting method for refraction in a glass [99] does not support complicated reflection observed
at water surfaces.

In this chapter, we propose a matting method that handles Fresnel reflection in a single
image based on user markups. Targeting reflection at surfaces such as the surface of deep
water, glossy table top or floor, we introduce the following three assumptions; 1) the trans-
mission color can be approximated as uniform, 2) a pair of an object that is the source of
reflection and the corresponding reflection image can be found in the input image, and 3)
the reflection surface is mostly planar but possibly wavy. We first estimate the transmission
color based on the first and second assumptions, using color transfer [69]. We then roughly
estimate the reflection component and alpha matte as well as camera parameters, assuming
the alpha matte is smooth. However, the alpha matte should contain high-frequency regions
in case of wavy reflection surfaces. We thus propose a novel filter to refine the alpha matte,
which is validated using ground-truth data. Using the calculated information, we also pro-
vide a compositing system with which the user can composite new objects onto the input

47

Figure 5.1: Overview of our system. To solve the matting problem, the user specifies the
region of reflection surface and the pairwise scribbles. After the several matting steps, a
composite result with plausible reflection can be obtained.

image with plausible reflection in real time.
Figure 5.1 illustrates the overview of our system. In the matting stage, our algorithm

takes as input a single image including a reflection surface and a user-specified region of
the reflection surface as well as a pair of scribbles for color transfer. Our matting algo-
rithm computes a reflection component, a transmission component and an alpha matte, and
then update the reflection component and the alpha matte to handle the effect of waves
(Section 5.1). With this matting information, we subsequently render reflection images of
newly composited objects using ray tracing (Section 5.2).

Note that this is the first attempt to extract the complicated reflection and alpha matte
for Fresnel reflection in a single image. We demonstrate the effectiveness of our method
using various examples (Section 5.3).

5.1 Reflection Matting
We start by defining our reflection matting problem and the assumptions for solving the
problem. We then describe our matting algorithm that separates each component of an
input image.

5.1.1 Reflection model and assumptions
In our work, we target reflection caused by the Fresnel effect, which occurs at an interface
between substances with different refractive indices. The observed light intensity at the
interface is a linear blending of those of the reflected light and transmitted light. For an

48

image, we have

I(x) = α(x)R(x) + (1− α(x))T(x), (5.1)

where I, R and T are the 3-channel (RGB) input image, reflection component and trans-
mission component, respectively. α ∈ [0, 1] is the Fresnel coefficient and x = (x, y)T is a
pixel coordinate.

The Fresnel coefficient depends on the incident angle of the viewing ray. At the air-
water interface, for example, α monotonically increases as the incident angle becomes
sufficiently large, and thus the Fresnel coefficient becomes small at the near side and large
at the far side of the camera, as shown in the alpha mattes in Figure 5.1 (each pixel intensity
encodes the Fresnel coefficient). Correspondingly, the transmitted color becomes dominant
at the near side while the reflected color dominant at the far side.

Solving for Eqn. (5.1) from a single input image I is an ill-posed problem because we
have seven unknowns with only three knowns per pixel. Although this might seem similar
to natural image matting [83] that decomposes an image into foreground and background
components and an matte, or the recent refraction matting [99], the targets and formulations
are different as described in Section 2.1.2. We instead focus on the typical cases observed
at surfaces of deep water, a glossy table top or floor, which we see in many photographs on
the Internet. Specifically, we make the following three assumptions.

1. The transmission component T can be approximated as a uniform color.

2. At least one real object and the corresponding reflection image can be found in the
input images.

3. The reflection surface is mostly planar but possibly wavy.

Throughout this chapter, we use the term real object to denote an object that is the source
of reflection above the reflection surface, in contrast to the corresponding reflection image.
Our matting algorithm takes as inputs a single photograph including a reflection surface and
a user-specified mask for the region of the reflection surface as well as a pair of scribbles
for color transfer. We denote the real-object region and the reflection region in the input
image as region Π and region Ω, respectively. Our matting algorithm calculates T, R and
α for region Ω. Region Π is above the upper part of boundary ∂Ω of region Ω.

Based on these assumptions, our matting algorithm proceeds in the several steps (see
Figure 5.1). Because the transmission component T is assumed uniform (i.e., constant)
over the entire region and easier to solve than the other components, we first estimate
T (Sec. 5.1.2). We next calculate an α matte according to the Fresnel equation using
viewing rays’ incident angles calculated based on the camera parameters that we estimate
(Sec. 5.1.3). We then compute the reflection component R using the other estimated in-
formation (Sec. 5.1.3). Note that the reflection surface can be wavy. We refine the reflec-
tion component R and α matte using our novel filter (Sec. 5.1.4). Algorithm 1 shows the

49

overview of our matting algorithm. In the following subsections, we describe the details of
these steps.

Algorithm 1 Reflection matting.
Input: I, reflection region Ω and pairwise scribbles {SΠ, SΩ}
Output: T, R and α
Ids← DOWNSAMPLING(I);
RΩ← COLORTRANSFER (Ids, SΠ, SΩ); // Sec. 5.1.2
T← CALCTRANSMISSIONCOLOR(Ids, RΩ); // Sec. 5.1.2
{α(p), yp} ← COLLECTSAMPLES(Ids, T, Ω); // Sec. 5.1.3
(θo,ϕ)← CALCCAMERAPARAM({α(p),yp}); // Sec. 5.1.3
α← CALCALPHAMATTE(θo, ϕ, Ω); // Sec. 5.1.3
for each x ∈ Ω do
R(x)← I(x)−(1−α(x))T

α(x)
;

end for
if reflection region Ω is wavy then
R← APPLYSMOOTHINGFILTER(R, Ω); // Sec. 5.1.4
for each x ∈ Ω do
α(x)← (I−T)·(R(x)−T)

∥R(x)−T∥2 ;
end for

end if

5.1.2 Estimating transmission component T
Assuming the transmission component is uniform, T in Eqn. (5.1) becomes a constant
vector.

I(x) = α(x)R(x) + (1− α(x))T. (5.2)

We then consider the gradient of luminances of Eqn. (5.2).

∇I(x) = (R− T)∇α(x) + α(x)∇R(x), (5.3)

where I , R and T are the luminances of I, R and T, and∇ = (∂
∂x
, ∂
∂y
)T is the gradient oper-

ator. If the reflection surface is sufficiently flat, the α matte is smooth because differences
of incident angles are very small, and thus ∇α is negligible. We therefore approximate
Eqn. (5.3) as

∇I(x) ≈ α(x)∇R(x). (5.4)

However, this approximation might not be valid in case of wavy surfaces because incident
angles can vary greatly. To avoid the effect of wavy surface, we downsample the input

50

image using the Gaussian filter. For an input image of 600 × 400 pixels, for example, we
scale it down to 1/4.

If we know α and R, we can calculate T from Eqn. (5.2) just using pixels only in a
partial region of reflection region Ω because T is constant. On the other hand, α can be
computed using I and R according to Eqn. (5.4). We therefore seek for R in reflection
region Ω locally. Ideally, R in reflection region Ω can be obtained by finding the cor-
responding region in real-object region Π and using the real-object colors, based on our
second assumption. However, accurate alignment of the pair is difficult because in re-
flection region Ω the colors are changed due to the Fresnel effect and the shapes are also
changed due to waves compared to those of real-object region Π. We thus do not find the
exact matching of the pair, but bring the color distribution in Ω close to the distribution in
Π using color transfer [69]. We use the color-transferred I ∈ Ω as R.

The pairwise regions for color transfer are specified by user-provided scribbles SΠ and
SΩ. As shown in Figure 5.1 as “User markups” in “Inputs”, the user specifies a region
in real-object region Π using a single green scribble SΠ, and the corresponding region
in reflection region Ω using a single red scribble SΩ. The colors in scribble SΠ are then
transferred to those in scribble SΩ to estimate the reflection component R in reflection
region Ω. Note that, in this stage, we do not require R for every pixel in entire reflection
region Ω because we just collect samples to estimate T.

Color transfer works well due to the following reason. In scribble SΩ, α can be con-
sidered constant because the region is vertically short, and then I in the region becomes
scaled R with a constant offset according to Eqn. (5.2). That is, R in scribble SΩ can be
obtained by scaling the variance of I in scribble SΠ and offsetting the mean. We thus use
color transfer to conform the mean and variance of I in scribble SΩ to those in scribble SΠ.

Finally, we calculate T using the information we obtained above. Now having pixel
samples of R in scribble SΩ, we calculate α from Eqn. (5.4) by projecting ∇I(x) onto
∇R(x).

α̃(x) =
∇I(x) · ∇R(x)

∥∇R(x)∥2
. (5.5)

Note that α̃ is an intermediate value to estimate T. We omit samples if ∥∇R(x)∥2 < 0.01
to reduce error caused by division. We calculate T for each sample using α̃ based on
Eqn. (5.2), and then average the values to reduce error.

5.1.3 Estimating α matte and reflection component R
Whilst we obtain α values only in a partial region SΩ in the previous subsection, we now es-
timate the entire α matte. The goal of this stage is to obtain a smooth α matte for capturing
the entire (i.e., low-frequency) variation of the matte, and then calculate the corresponding
R. Here we again use the downsampled I as input to avoid the effect of waves. To reli-

51

Camera vertical

view angle

Image plane

γ

θo

θ

y

Reflection surface

h

Camera

Vertical pixel
coordinates

Reference
incident angle

Incident
angleImage height

ϕ

Figure 5.2: Relationship between a reflection surface and camera parameters.

ably estimate a smooth α matte, we exploit the analytic formula of the Fresnel coefficient.
Specifically, we use the Schlick’s approximation [74] for the Fresnel coefficient as follows.

α(θ) = α0 + (1− α0)(1− cos(θ))5, (5.6)

and, for a planar reflection surface, the incident angle θ of a viewing ray is given by

θ(y) = γ(y) + θo, γ(y) = arctan

(
2y

h
tan(

ϕ

2
)

)
, (5.7)

where h is the image height, y is the vertical pixel coordinate, ϕ is the vertical view angle
of the camera and θo is the reference incident angle (see Figure 5.2) for the gazing direction
of the camera. α0 is a constant determined by the refraction index n of material as α0 =
n−1
n+1

. In our experiments, we simply use fixed values for refraction indices n according
to materials; n = 1.33 for water, for example. Note that roughly specifying a refraction
index does not matter because small variation of n does not affect the value of Eqn. (5.6)
significantly.

To determine the incident angles θ, we have to estimate camera parameters θo and
ϕ. We therefore solve the following minimization problem using the Lebenberg-Marquart
method.

argmin
θo,ϕ

∑
p∈P

∣∣α(p)−(α0+(1−α0)(1−cos(θ(yp)))5
)∣∣2 (5.8)

52

where P = {p = (xp, yp) |p ∈ Ω} is a set of positions of training samples. Although
Eqn. (5.8) is non-linear, we found it converges to an appropriate minimum when we set
θo = 70◦ and ϕ = 30◦ as initial values. Note that ϕ can be also specified from the EXIF data
of the input photograph, and the refraction index n can be also estimated in the optimization
of Eqn. (5.8).

We collect samples {α(p), yp} in entire region Ω, not in a partial region as done in the
previous subsection, to avoid bias. To compute α(p) as a training sample, we search for an
appropriate reflection-color sample in real-object region Π. Let R(q) (q ∈ Π) be the color
of a reflection-color sample. We seek for the best R(q) based on the following metric ϵ.

ϵ(R(q),T) = ∥I(p)− (α̂(p)R(q) + (1− α̂(p))T)∥, (5.9)

α̂(p) =
(I(p)−T) · (R(q)−T)

∥R(q)−T∥2
, (5.10)

where α̂(p) corresponding to the smallest ϵ is used as α(p). Both Eqns. (5.9) and (5.10)
are derived from Eqn. (5.2). ϵ measures how close to I(p) the linear blending of R(q) and
T is. Intuitively, ϵ represents the distance between point I(p) and a segment connecting
points R(q) and T in RGB color space. Smaller ϵ means a better sample. The use of this
metric is inspired by robust matting [82], where both background and foreground samples
are collected based on the metric for natural image matting. Note that we do not use the
map α̂ as an α matte but use it just as a set of samples because it may contain substantial
noise and errors.

To efficiently search for appropriate samples R(q) in real-object region Π, we limit
the search space so that corresponding real objects are likely to be found. Let d be the
vertical distance between the pixel in question and the upper part of the boundary ∂Ω of
the reflection region Ω, as shown in Figure 5.3. Within a search window Wϵ (we use a 7×7
window in our experiments) centered at the vertically symmetric position of p, we choose
a sample that has the smallest ϵ.

q = argmin
q̃∈Wϵ

ϵ(R(q̃),T). (5.11)

In case that d is too large and the corresponding search window protrudes out of the image,
we just ignore such sample at p. For reliable estimate of camera parameters, we collect
20% pixels in reflection region Ω with smallest ϵ.

In summary, we calculate α and R as follows. We first estimate camera parameters
using Eqn. (5.8) as well as training samples based on Eqns. (5.9) and (5.10). We then
obtain smooth α for the entire region Ω using the estimated camera parameters as well as
Eqn. (5.6), and then calculate R via Eqn. (5.2). We update these two components in the
next subsection to account for wavy reflection surfaces.

53

d

d

sample position p

search window Wε

boundary ∂Ω

reflection
region Ω

real-object
region Π

Figure 5.3: To calculate α(p) as a training sample, we search for a pixel that has the
smallest ϵ within search window Wϵ (blue square, enlarged for illustration purpose), and use
it as sample R(q). The center of search window Wϵ is vertically away from the boundary
∂Ω by distance d.

5.1.4 Updating R and α

Here we update R and α to account for wavy surfaces, where the α matte should contain
high-frequency regions because of varying incident angles of viewing rays. However, the
α matte obtained so far is smooth, and the current R contains the high-frequency residuals.

For this issue, we smoothen the residuals in R and then compute α using the smoothed
R from Eqn. (5.2). Note that we should preserve inherent edges of the reflection and
smoothen only the residuals. However, typical edge-preserving filters including the bilat-
eral filter [81] are not optimal because they preserve not only edges of true R but also
edges of high-frequency residuals, which should be smoothened. Therefore, we design a

54

new filter as a variant of the bilateral filter, and apply it to R as follows.

R∗(x) =

∑
y∈Wx

G(x,y)w(x,y)R(x)∑
y∈Wx

G(x,y)w(x,y)
, (5.12)

w(x,y) = exp

(
−(β(x,y))2

σ

)
, (5.13)

β(x,y) = arccos

(
(I(x)−T) · (I(y)−T)

∥I(x)−T∥ ∥I(y)−T∥

)
, (5.14)

where R∗ is the filtered R, Wx is a set of pixels in the K ×K filter kernel (K is the kernel
size) centered at x, G is the spatial Gaussian weight, w is our novel weight function and σ
indicates its variance. Our weight function w can detect the variability of the inherent colors
of the reflection between neighbor pixels. The smaller the difference between these colors
is, the more our filter smoothens R. We set σ = 0.01 for all of our experiments whilst the
kernel size was adjusted for each input image according to the image-space wavelength of
wavy surfaces in the reflection region Ω.

We geometrically explain weight function w(x,y) of our filter using Figure 5.4. Intu-
itively, β(x,y) in w(x,y) is the angle between vectors I(x) − T and I(y) − T. Note that
we should smoothen R according to true R, but we do not know the exact values. Instead
we know I and T, and vector I−T shares the same orientation with vector R−T because
I(x)−T = α(x)(R(x)−T) as derived from Eqn. (5.2). Therefore, using the known vec-
tor I−T, β(x,y) detects the difference of true R between pixels x and y whilst β(x,y) is
independent of α. Consequently, our filter can preserve the edges of true R and smoothen
the residuals in current R caused by the variation of α.

Figure 5.5 compares our filter with the typical filters, Gaussian filter and bilateral filter.
We use the input image in Figure 5.1, which is synthesized by ray tracing with an envi-
ronment map and Stokes waves. We also compare our result with ground truth for this
synthesized input image. We set the kernel sizes of all the filters as 27× 27 because of the
relatively wide waves in the input.

In the result by the Gaussian filter in Figure 5.5(a), the filtered R is overall too smooth
whilst α includes undesired edges of the reflected objects. These errors cause the inappro-
priate composite result where the reflection image of woods is blurred. The result using
the bilateral filter are shown in Figure 5.5(b). The bilateral filter successfully eliminates
the edges of reflected objects in α. However, it fails to smoothen waves in R and thus fails
to capture waves in α. As a result, the reflected image of the gull in the composite result
is unnaturally flat. Figure 5.5(c) shows our result. Our filter successfully alleviates the
errors mentioned above. Specifically, in our result, waves in true α are extracted whilst the
reflection edges are preserved similarly to the bilateral filter. Compared to the ground truth
as shown in Figure 5.5(d), our result extracts each component more faithfully than others.

55

5.2 Reflection Composition
After decomposing the input image into each component, we compute reflection of newly
composited objects using the components and camera parameters. In the compositing stage,
the reflection image Rnew for a composited object is synthesized to create the final com-
posite result Inew.

Inew(x) = α(x)Rnew(x) + (1− α(x))T. (5.15)

To compute the new reflection component Rnew, we employ ray tracing. The composited
objects are represented as billboards facing to the camera and in contact with the reflection
surface. The incident angles θ of viewing rays can be estimated according to Eqn. (5.6) as
follows.

θ(x) = arccos

(
1−

(α(x)− α0

1− α0

) 1
5

)
, (5.16)

where x denotes the pixel position that a viewing ray passes through. Note that naively ap-
plying ray tracing causes aliasing in reflection images especially around object silhouettes;
a reflected image in a photograph should be slightly blurred because of subpixel-scale re-
flection due to small waves on the surface. Therefore, we apply prefiltering using the
Gaussian filter when fetching colors of real objects.

In addition, we implemented two operations for more flexible compositing. One is the
contact constraint. If the object actually faces in an oblique direction, a gap might be found
between the bottom of the object and the reflection surface (Figure 5.6(b)). To correct this,
the user provides a scribble to roughly specify the region where the bottom of objects are
actually in contact with the reflection surface (Figure 5.6(c)). Our system then extracts the
bottom of the object within the scribble. The other operation is the height adjustment, with
which the user adjusts the height of objects from the reflection surface using the mouse
wheel. This operation allows us to calculate reflection of the objects such as birds being in
the air (Figure 5.7(b)).

5.3 Experimental Results and Discussion
We implemented our prototype system as a single-threaded C++ program, and conducted
experiments on a computer with Intel i7 CPU at 2.8GHz and 8GB RAM. The statistics of
our matting results are summarized in Table 5.1. The compositing process is done in real
time, as demonstrated in the accompanying video.

Figure 5.8 shows several results of our method with natural images including water
surfaces as inputs. We can see that reflection images are appropriately created according
to the Fresnel effect. That is, reflection colors are dominant on the surface at the far side

56

Table 5.1: The computational times (sec) for matting in our results with different image
sizes and filter kernel sizes (pixel).

Image Image size Kernel size Time
Figure5.1 400× 400 27× 27 7.92

Figure5.8(b) 640× 428 5× 5 0.896
Figure5.8(d) 640× 450 27× 27 7.68
Figure5.8(f) 600× 400 13× 13 1.40

Figure5.10(b) 620× 403 5× 5 0.801
Figure5.10(d) 615× 413 (w/o filter) 0.532
Figure5.10(f) 420× 634 13× 13 1.37

of the viewpoint whilst dark water colors dominant at the near side. Note that warping by
waves are also successfully handled especially in the second and third columns.

The rightmost column of Figure 5.8 shows a comparison between our result and real
reflection in a photograph. We extracted the real object that causes real reflection in the
input image and synthesized it next to the original for a side-by-side comparison. Our
result is visually plausible but the shape of the reflection image is subtly different from real
one because of billboard approximation. Note that such composite might be also possible
using Poisson Image Editing [67] if a real reflection image is available, but the method
might produce unnatural reflection images on waves with different wavelength or different
camera angles (Figure 5.9). We would like to emphasize that Poisson Image Editing cannot
work without a real reflection image, but our method can synthesize plausible reflection
even without any real reflection image.

As shown in Figure 5.10, our method can also handle reflection at other surfaces, such
as a wet ground (left), a table top (middle), and a glossy floor (right). In the middle example,
the relative image sizes of the cups are automatically adjusted according to the scene depth
according to the estimated camera parameters (Section 5.1.3) whilst the original sizes of
the cups are all the same. In the left and right examples, we also consider warping by wavy
reflection surfaces. Note that our method can produce plausible reflection images even
though the original objects (insets in (a), (c), (e)) do not have reflection images.
Limitation. Billboard approximation used in ray tracing might result in unnatural appear-
ance of reflection images. As shown in Figure 5.11, the the top of the tea cups are rendered
as reflection images but, in reality, the top of teacups should not be seen. This artifact
would be alleviated by handling the geometries of real objects.

57

R(x)

I(x)

T

I(y)

R(y)

R

G

B

α(x)

α(y)

β(x, y)

Figure 5.4: Geometric interpretation of our filter. The degree of smoothing by the filter
depends on weight function β, which indicates the angle between vectors I(x) − T and
I(y) − T in RGB color space, and can detects the color variation of true R. With this
weight function, our filter can smoothen waves only caused by the variation of α.

58

(a
)

G
au

ss
ia

n
 f

il
te

r
(b

)
B

il
at

er
al

 f
il

te
r

(c
)

O
u
r

fi
lt

er
(d

)
G

ro
u
n
d
 t

ru
th

α (Fresnel) matte T (inset) and R Composite results

2

Figure 5.5: A comparison of the results between our filter and typical existing filters as
well as ground-truth data. Note that our filter yields the most faithful α matte and the most
plausible reflection image in the composite result.

59

(a) Specifying contact constraint

(b) w/o contact constraint (c) with contact constraint

Figure 5.6: Contact constraint. (a) The user can specify the bottom of an object using a
green scribble, (c) to make the object contact with the reflection surface appropriately.

60

(a) w/o height adjustment (b) with height adjustment

Figure 5.7: Height adjustment. The user can adjust the height of objects for flying objects
using the mouse wheel.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.8: Our synthetic results with photographs including water surfaces. Each inset
shows a magnified image of our result.

61

Poisson Ours

Input of Poisson Input of ours

Figure 5.9: Comparison between the result of Poisson Image Editing [67] and ours. Whilst
Poisson Image Editing requires a real reflection image and might produce an unnatural
result due to waves of different wavelength or different camera angles, our method can
synthesize plausible reflection even without any real reflection image.

62

(a)

(b)

(c)

(d) (e) (f)

Figure 5.10: Our method can handle reflection at a wet ground (left) and off-specular reflec-
tion at glossy surfaces including a table top (middle) and a floor (right). Note that original
objects (insets in (a), (c), (e)) do not have reflection images.

Figure 5.11: Limitation of our method. The top of the tea cups are rendered in reflection
images (red oval), which is physically incorrect. This is because of the billboard approxi-
mation used in ray tracing.

63

Chapter 6

ROIs Extraction for Efficient Image
Editing

Edit propagation enables us to easily edit images based on simple user input. Various
applications of edit propagation exist, such as grayscale image colorization, color image
recoloring, segmentation and tone adjustment. Many efforts have been made to attack the
edit propagation problem [47, 58, 52, 91, 92, 53, 15, 94, 14, 97]. Specifying sparse image
edits, users can propagate the image edits to the entire image according to the propagation
principle based on pixel similarity (e.g., proximities of positions, colors or textures).

We can regard edit propagation as a sort of multi-class classification problem. From
image feature vector xi at pixel i, a typical edit propagation pipeline estimates multi-class
probability vector yi ∈ [0, 1]n that represents how likely it is that a pixel i belongs to
each of n types of strokes (class labels). A model for estimating yi is constructed from
user-specified strokes and xi on the strokes. A number of techniques have been proposed
for edit propagation using various models, such as optimization-based methods [47, 3],
gentle boost classifier [52], function interpolation with radial basis functions (RBFs) [53],
manifold learning [15], and a probabilistic model [94]. Most of these previous studies use
a combination of multiple features with different meanings as input. For example, they
use concatenated features x = [σcc

T , σtt
T , σss

T]T where c denotes pixel color, t texture
feature, and s spatial coordinate whereas σc, σt, and σs denote parameters that determine
the importance of each feature.

In most previous work, users must heuristically select the image features that they use
and adjust parameters for the features in accordance with their needs and target images.
As shown in Figure 6.1, the editing results can be drastically changed depending on the
parameters. For example, edits on strokes with a given intensity propagate to pixels that
have similar intensity when σc is large. Furthermore, using too many visual features might
limit the range/diversity of input images on which the propagation succeeds. For example,
the Gabor feature, which is typically used as a texture feature, has multiple parameters
such as a kernel size and rotation angle. Using various patterns of the parameters as well

64

Input image and user strokes

[LJH10]

= 5)

[XYJ13]

= 10)

[LJH10]

= 10)

[XYJ13]

= 5)
Our DNN

Figure 6.1: Image colorization using edit propagation. While existing methods [53] [94]
(denoted as [LJH10] and [XYJ13]) require manual parameter tuning for each image feature,
our DNN-based method automatically extracts stroke-adapted features.

as other image features causes an overfitting problem of the estimated model to training
data on strokes due to the increased dimension of input vectors. Consequently, unneeded
visual features degenerate estimated results [52]. On the other hand, manually selecting
appropriate visual features from many candidates is labor intensive.

Considering the above, we conducted a study to address the following research ques-
tion:

Can we automatically extract effective features for edit propagation without
selecting image features manually?

To this end, we adopt deep learning [7], which is a technique for learning deep neural
network (DNN) models. Recently, this technique dramatically improved the accuracy of
image recognition and speech recognition [43, 23]. While conventional approaches man-
ually engineer features for classification, DNNs can be used for representation learning,
which automatically extracts effective high-level features for a task from low-level features
(e.g., image pixels and audio spectrum).

In this chapter, we propose DeepProp for extracting Deep features from a single im-
age for edit Propagation. Our method uses low-level visual patches and spatial pixel co-

65

DNN

model

Learning

Input image I on entire region

Estimation

Probability maps

Post-processing

Result

User feedback

Update

&

User strokes and

features on

Figure 6.2: System overview. The system first learns a DNN model from an input image
and user strokes. Next, stroke probabilities on all pixels are estimated using the DNN
model, and probability maps are obtained. Finally, the probability maps are refined by
post-processing. Every time the user updates strokes, the system updates the DNN model
efficiently using previously learned parameters.

ordinates as input of a DNN that automatically extracts features adapted to user-specified
strokes from a single image. In contrast to most previous work, we do not need to adjust the
importance of the input features. Then, we use the DNN as a classifier that estimates user
stroke probabilities, which represent how likely it is that each pixel belongs to each stroke,
from extracted features on the entire image. Figure 6.1 demonstrates that our method can,
without tuning parameters for image features, generate a better result than previous work.

For edit propagation with deep features, our work makes the following contributions:

• Edit propagation system using deep learning: We propose a system design of a
framework that consists of the following three main modules (Figure 6.2): learning,
estimation, and post-processing. First, a DNN model is learned using user strokes
and pixels on the strokes as input. Then, using the learned DNN model, user stroke
probabilities are estimated on the entire image (on pixels or, for more efficiency,
superpixels), and probability maps are obtained. Finally, probability maps or appli-
cation results (e.g., colorization) obtained from the probability maps are refined by
post-processing. Every time the user updates strokes, the system re-learns the DNN
model efficiently using previously learned parameters.

• DNN architecture for edit propagation: We propose a DNN architecture that ex-
tracts stroke-adapted visual features and spatial features using convolutional and
fully-connected network structures. The importance of the extracted two features is
also automatically determined using a feature combiner layer, and stroke probability
vectors are computed from the combined features using a soft-max layer.

• Learning algorithm for our DNN: A number of local minima can be found during op-
timization of parameters of DNN models, especially when DNNs have complicated
structures with deep layers and many neurons. Optimizing the entire network of our

66

Conv + ReLU Max-pooling Conv + ReLU

–dim.

visual feature

(c-channel patch)

-dim.

feature

-dim.

feature

-dim.

feature

256-dim. feature

Max-pooling

2-dim. spatial feature

(x and y coordinates)

Fully-conn.

+ ReLU
256-dim. feature

256-dim. feature
Fully-conn.

User stroke

probability

soft-max

Input image (c channels)

Visual feature extractor (VFE)

Spatial feature extractor (SFE)

Feature

Combiner (FC)

Label estimator (LE)

Fully-conn.

+

ReLU

+

Figure 6.3: Our deep neural network architecture.

DNN tends to fall into such undesirable local minima due to the error function’s van-
ishing gradients. This is because our DNN contains two types of the networks with
different depths. We develop a learning algorithm that efficiently propagates the gra-
dients to these networks and finds more desirable solutions, and can generate better
results than a naı̈ve learning algorithm.

6.1 DNN Architecture
The basic idea for designing a DNN is to extract high-level features for edit propagation
from low-level visual and spatial features. In edit propagation, we can assume that the
lowest-level features are color (or grayscale) values and coordinates. For visual features,
it is known that effective high-level features can be extracted using convolutional layers.
Instead of using single pixels, we use color (or grayscale) patches as low-level visual fea-
tures for convolution. This is because a patch enables implicitly handling pixel gradients
and capturing more various patterns than a single pixel. Additionally, we use pixel coordi-
nates as low-level spatial features. To extract the corresponding high-level spatial features,
we apply a non-linear transformation, since a convolutional layer cannot be applied in this
case. Both of the extracted high-level features are then combined and used for edit propa-
gation. We empirically experimented with several structures of the DNN, varying in, e.g.,
the sizes of convolutional kernels and the dimensions of high-level features.

As illustrated in Figure 6.3, our DNN is a feedforward neural network that has four
structures: visual feature extractor (VFE), spatial feature extractor (SFE), feature combiner
(FC), and label estimator (LE). The main notations used in this chapter are summarized in
Table 6.1. The DNN estimates probability vector yi of user strokes from feature vector xi =
[pT

i , s
T
i]

T at pixel i in input image I . Here, pi ∈ R9×9×c is a 9 × 9 patch feature centered

67

Table 6.1: Definitions of main symbols.
Symbols Descriptions

I input image.
xi image feature vector at pixel i.
gi binary vector for user strokes at pixel i.
Ω user stroke region.
XΩ set of input features xi in stroke region Ω.
GΩ set of binary vectors gi in stroke region Ω.
yi probability vector at pixel i.
Z probability map or colorized result.
U result obtained by post-processing.

θv, θs, θc, θl parameters of DNN model.
Gv, Gs, Gc, Gl layer functions of DNN model.

at pixel i with c color channels (e.g., three-channel RGB or one-channel grayscale), and
si ∈ R2 is a pixel coordinate. Each element of input feature vectors is normalized from 0
to 1. In contrast to most previous work, determining importance of each image feature is
not required. In the following sections, we describe the role of each structure of our DNN.

6.1.1 Visual feature extractor (VFE)
The VFE extracts a high-level visual feature, such as complicated texture patterns or simple
colors adapted to user strokes, from a low-level visual patch feature p. Specifically, the
VFE computes high-level visual features fv ∈ R256 from p using function Gv with model
parameter θv. Gv consists of two convolutional functions fconv1 and fconv2, a max-pooling
function fmp, and an activation function of the rectifier linear unit (ReLU) :

fv = Gv(p; θv), (6.1)
Gv(p; θv) =

fmp(fReLU(fconv2(fmp(fReLU(fconv1(p; θconv1))); θconv2))), (6.2)

where fconv1 applies 128 types of 3 × 3 × c filter kernels k with biases b to input patch
feature p. That is, fconv1 obtains 128 filtered maps (k ∗ p + b) by convolving input patch
features p with different filter kernels k and biases b. Then, the ReLU activation function
fReLU(v) = [max(0, v1),max(0, v2), ...,max(0, vm)]

T is applied to the convolved patch
(where the subscripts of v denote element indices of the vector). Next, we use a 2× 2 max-
pooling function fmp with stride 2, which yields position invariance over the patches. We
additionally apply convolution fconv2 with a 3× 3× 128 kernel and the activation function
fReLU . Finally, a 2 × 2 max-pooling with stride 2 is used again and a 256-dimensional

68

feature vector fv is obtained. θv denotes filter parameter (i.e., filter kernels k and bias terms
b) and is learned using user strokes as training data, as explained in Section 6.2.

6.1.2 Spatial feature extractor (SFE)
The SFE extracts an abstracted feature fs ∈ R256 from a spatial pixel coordinate s:

fs = Gs(s; θs), (6.3)
Gs(s; θs) = fReLU(Wss+ bs), (6.4)

where θs = {Ws,bs} is a model parameter of the SFE, and Ws ∈ R256×2 and bs ∈ R256

are a weight matrix and bias term. The dimension of the output feature vectors is set to 256
so that they have the same dimension as the visual features. In the same way, the feature
combiner (explained in the next section) can handle both the visual features and spatial
features fairly.

6.1.3 Feature combiner (FC)
The function Gc of the FC converts fv and fs extracted by the VFE and the SFE into a single
feature vector fc ∈ R256 :

fc = Gc(fv, fs; θc), (6.5)
Gc(fv, fs; θc) = fReLU(Gcv(fv; θcv) +Gcs(fs; θcs)), (6.6)
Gcv(fv; θcv) = Wcvfv + bcv, (6.7)
Gcs(fs; θcs) = Wcsfs + bcs, (6.8)

where θc = {θcv, θcs} is a model parameter of the FC (where θcv = {Wcv ∈ R256×256,bcv ∈
R256} and θcs = {Wcs ∈ R256×256,bcs ∈ R256}). Network structures similar to the FC
have also been introduced for combining multimodal features, such as image and audio [62,
89]. Such a network structure can determine the importance of two features by capturing
correlations across the two modalities. We utilize this structure for combining the visual
features and spatial features.

6.1.4 Label estimator (LE)
The function Gl of the LE estimates user stroke probability vectors y from feature vectors
fc extracted by the FC:

y = Gl(fc; θl), (6.9)
Gl(fc; θl) = fsoftmax(Wlfc + bl), (6.10)

69

where fsoftmax(v) = [exp(v1)∑n
i exp(vi)

, exp(v2)∑n
i exp(vi)

, ..., exp(vn)∑n
i exp(vi)

]T is the soft-max function and
θl = {Wl ∈ Rn×256,bl ∈ Rn} is a model parameter of the LE. The LE determines,
for each off-stroke pixel, a fractional weight for each stroke, based on the off-stroke pixel’s
similarity to pixels on the stroke. This is done using the soft-max layer, which acts as a
standard regression function for probabilistic multi-class classification.

6.2 Learning DNN from User Strokes
This section explains how to learn the model parameters (θv, θs, θc, θl) of our DNN using
training data: user strokes GΩ and input features x ∈ XΩ on stroke region Ω.

A straightforward way for learning the model parameters is to minimize the error func-
tion E between probability vectors estimated by the DNN and binary vectors gi ∈ GΩ
obtained from user strokes:

(θ̂v, θ̂s, θ̂c, θ̂l) = argmin
θv ,θs,θc,θl

E(θv, θs, θc, θl), (6.11)

E(θv, θs, θc, θl) =∑
i∈Ω

L(Gl(Gc(Gv(pi; θv), Gs(si; θs); θc); θl),gi), (6.12)

where L indicates the cross-entropy loss function defined as L(y,g) = −
∑n

k=1{gk ln yk +
(1− gk) ln (1− yk)}.

Unfortunately, this naı̈ve approach does not work in practice. Because of the structural
complexity of our DNN, we need to consider the fact that many local minima can be found
in an optimization process such as the one described above. In general, model parame-
ters of feedforward neural networks are learned using the backpropagation of error with a
gradient-based optimization algorithm, such as the stochastic gradient descent (SGD) [41].
However, in our case, when the model parameters of the entire network are optimized si-
multaneously using the backpropagation, the algorithm falls into local minima before the
gradient error propagates sufficiently into the deep layers of the VFE, due to the vanishing
gradient problem. That is, the learning speed of the SFE is much faster than that of the
VFE because the SFE is shallow whereas the VFE is much deeper.

To address this issue, we develop a learning algorithm for optimizing the model param-
eters efficiently in two steps. Figure 6.4 illustrates this learning strategy. In the first step,
we omit the SFE from the DNN and optimize the deep network consisting of the VFE, FC,
and LE. Specifically, we pre-train visual features by minimizing a new error function Ev:

(θ̂v, θ̂cv, θ̂l) = argmin
θv ,θcv ,θl

Ev(θv, θcv, θl), (6.13)

Ev(θv, θcv, θl) =∑
i∈Ω

Lv(Gl(Gcv(Gv(pi; θv); θcv); θl),gi), (6.14)

70

Each binary vector

obtained from user strokes

Minimize

loss

Minimize

loss

VFE FC LE

VFE

SFE

FC LE

(Visual feature pre-training)

1st backpropagation based on and

2nd backpropagation based on and

Use leaned parameters

for 2nd initialization
.
.
.

Figure 6.4: Our strategy of DNN learning. We first pre-train visual features on the network
consisting of the VFE, FC, and LE using backpropagation, and then learn the entire network
together with the SFE.

where Lv is the cross-entropy loss of the above network. We optimize the parameters based
on gradients ∂Lv

∂θv
, ∂Lv

∂θcv
, ∂Lv

∂θl
using the backpropagation. We initialize the model parameters

with random numbers following a normal distribution with zero mean and standard devi-
ation equal to the inverse of the dimension of each model parameter. For optimization,
we use the mini-batch Adam algorithm [41] because of its fast convergence. To determine
convergence, we check if the error in all training data is smaller than ϵ|Ω| or the difference
between the current error and previous error is larger than γ|Ω| (where ϵ and γ are coeffi-
cients, and |Ω| is the number of pixels in region Ω). Note that the latter condition is used
to abort optimization if it does not converge completely. In the second step, we optimize
the entire network with the SFE by initializing the DNN with the model parameters θ̂v, θ̂cv,
and θ̂l learned in the first step. The model parameters θs and θcs not learned in the first step
are randomly initialized and optimized using the mini-batch Adam algorithm in the same
way as above. For optimization, mini-batch size is empirically set to 10, and both ϵ and γ
are set to 0.01.

As can be seen in Equations (6.12) and (6.14), the computational complexity of the

71

optimization w.r.t. the number of training data |Ω| is O(|Ω|). To accelerate the learning,
we subsample pixels Ω′ by 10% of Ω for optimization. Even with subsampling the learned
result is similar to the result with all data due to inherent redundancy, as demonstrated in
Section 6.4.1. Algorithm 2 summarizes our DNN learning algorithm.

Algorithm 2 Learning DNN from user strokes
Inputs: stroke region Ω, image feature vectors xi = {pi, si} ∈ XΩ, and stroke binary
vectors gi ∈ GΩ
Outputs: θv, θs, θc, θl

1: Ω′ ← RANDOMSAMPLING(Ω);
2: θv, θs, θc, θl ← NORMALDISTRIBUTION();
3: preEv ← 0;
4: while true do
5: θv, θcv, θl ←MINIBATCHADAM(XΩ′ ,GΩ′ , ∂Lv

∂θv
, ∂Lv

∂θcv
, ∂Lv

∂θl
);

// Eq. (6.14)
6: if Ev < ϵ|Ω′| or Ev − preEv > γ|Ω′| then
7: break;
8: end if

preEv ← Ev;
9: end while

10: preE ← 0;
11: while true do
12: θv, θs, θc, θl ←MINIBATCHADAM(XΩ′ ,GΩ′ , ∂L

∂θv
, ∂L
∂θs

, ∂L
∂θc

, ∂L
∂θl

);
// Eq. (6.12)

13: if E < ϵ|Ω′| or E − preE > γ|Ω′| then
14: break;
15: end if

preE ← E;
16: end while

6.2.1 Efficient DNN update per user edit
Every time the user adds or removes a stroke in order to obtain a desired result, the system
has to re-learn the model parameters from the update strokes. Naı̈vely re-learning from
scratch is costly, and thus accelerating the re-learning is crucial for interactive editing.

To update the model parameters efficiently, we reuse the model parameters learned
with the previous user strokes as the initialization of the learning algorithm (line 4 in Al-
gorithm 1). To achieve this, we need to adapt the LE structure accordingly. As shown in
Figure 6.5, if the total number of different types of user strokes (e.g., strokes that edit color
for colorization) is reduced, corresponding rows of the model parameters (i.e., the weight

72

matrix Wl and bias term bl) are deleted. If a new type of user stroke is introduced, we add
new rows and initialize them with random numbers following the normal distribution.

...

...

...

=

Weight matrix

Remove

old stroke

Add

new stroke

=

=

Label estimator (LE)

Figure 6.5: Efficient model parameter update. If user strokes are added or removed, model
parameters of the LE are updated efficiently using previous parameters.

6.3 Edit Propagation Using DNN

6.3.1 Estimating probability maps
We now propagate information from the user strokes to all pixels in the input image us-
ing the learned DNN model. Given a patch feature and coordinate feature of each pixel,
our feedforward neural network outputs a stroke probability vector using the learned pa-
rameters. However, processing all pixels one-by-one takes a large amount of time since
the feedforward computation for one data point includes many applications of convolution
filtering.

73

We adopt superpixel-wise propagation to reduce the computational time. For each su-
perpixel, a center pixel is calculated, and then a user stroke probability is computed using
the DNN model from features calculated only at the center pixel. Finally, the same stroke
probability is assigned to all the pixels in the corresponding superpixel. For generating
superpixels, we use the simple linear iterative clustering (SLIC) [2] because this algorithm
can generate regularly-shaped superpixels that can reduce the gap between shapes of su-
perpixels and patches.

6.3.2 Post-processing
We refine the estimated result by post-processing, which has mainly two roles, i.e., smooth-
ing and interpolation. First, we can improve the result by smoothing it across superpixels.
Second, interpolation can alleviate noise and halo artifacts along object boundaries [15, 94].
Similarly to [94], we obtain a final editing result (e.g., colorized or segmented images) U
from the result Z estimated with the DNN model, by solving the following optimization
problem:

min
ui∈U

∑
i

βi||ui − zi||2 + λ
∑
i

∑
j∈N(i)

ϕij||ui − uj||2, (6.15)

βi = ⊖{ei = 0}, (6.16)

where zi ∈ Z denotes the quantity being post-processed, e.g., the stroke probability vector
yi (in case the probability map itself is the target of the post-processing) or the result
computed from yi in a specific application (e.g., color in a colorization application). ei
is binary edge at pixel i in input image I , and ⊖ is the morphological erosion operator.
λ determines the degree of smoothing, and N(i) is a set of neighbor pixels of pixel i.
We can use several types of weighting coefficients ϕij that represent relations between
neighbor pixels, such as the affinity function [47] based on similarity of pixel values based
on similarity of pixel values (when considering pixel gradient information) and matting
Laplacian [48] for matting. In our experiment, λ is set to 5 for all images. To solve this
linear system, we use the Gauss-Seidel method because of its simplicity of implementation.
Finally, Algorithm 3 summarizes our edit propagation using the DNN model.

6.4 Experiments
We implemented our prototype system with C++ and the OpenCV2.4.9 library except for
deep learning. For implementing deep learning, we used Python and the chainer library.
The system was run on a PC equipped with a 2.80 GHz CPU and 8 GB of memory. The
image sizes we used in our experiments, the number of user strokes (total pixels), and com-
putational times of our method are summarized in Table 6.2. As can be seen in the table, the

74

Algorithm 3 Edit propagation using DNN
Inputs: input image I , image feature vectors xi = {pi, si}, learned DNN parameters
θv, θs, θc, and θl
Output: final editing result U

1: Ωs ← EXTRACTSUPERPIXEL(I);
2: for each superpixel S ∈ Ωs do
3: k ← EXTRACTCENTERPIXEL(S);
4: yk ← Gl(Gc(Gv(pk; θv), Gs(sk; θs); θc); θl);
5: Z ← ASSIGNRESULTTOSUPERPIXEL(S,yk);
6: end for
7: U ← POSTPROCESSUSINGOPTIMIZATION(I, Z);

Input image and user strokes Without visual feature pre-training With visual feature pre-training

Figure 6.6: Comparisons of recolorization results without and with visual feature pre-
training.

results of Figure 6.1 and the lower center of Figure 6.10 took longer than most of the oth-
ers. This is because the convolutional layers require substantial learning to extract effective
visual features such as textures from little available information (i.e., 1-channel grayscale
values). We also tested with the high-resolution image in Figure 6.6 in our experiments.
Although it took the longest, the time needed for that image is relatively short given that
the number of pixels is tens of times larger than the other images. This is because only
pixels on strokes are used for learning and superpixels are used for estimation.

6.4.1 Evaluation of proposed method
Before comparing our method to previous work, we evaluate our method itself.
Learning algorithm. We first evaluate effectiveness of the proposed learning algorithm
for our DNN. Figure 6.6 shows comparisons of image recoloring results with and without
the visual feature pre-training. Without this, the visual features (texture patterns or color)

75

Table 6.2: Total amount of inputs and computational times (seconds) of our method on
CPU.

Images Image sizes
of user strokes
(# of total pixels) Times

Fig.6.1 620× 413 20 (7701) 97.4
Fig.6.2 400× 314 10 (1818) 23.0
Fig.6.6 top 392× 70 3 (1882) 18.3
Fig.6.6 bottom 1800× 1200 19 (17964) 432.4
Fig.6.10 top 480× 360 4 (2457) 22.4
Fig.6.10 upper center 640× 480 5 (3208) 36.5
Fig.6.10 lower center 500× 375 13 (20342) 271.6
Fig.6.10 bottom 640× 427 9 (3285) 40.0
Fig.6.12 top 400× 285 4 (5353) 36.1
Fig.6.12 center 400× 267 8 (9666) 49.9
Fig.6.12 bottom 400× 280 3 (6940) 39.3

were not sufficiently learned from the image, and the image edits propagated too strongly,
only relying on the spatial features. This means that the optimization process fell into
the local minimum before the gradient of the error function sufficiently propagated to the
network of the VFE. Specifically, in the upper-center image in the figure, the specified
colors (pink and blue) are leaking across the different textures because texture features are
not extracted sufficiently. Also, in the red box of the lower-center image, the color specified
with the green stroke did not propagated according to the texture patterns of the center of
the sunflower, due to the same reason. By contrast, we can see that using our learning
algorithm with visual feature pre-training alleviates these problems in the right images.
Updating algorithm. We evaluate the effectiveness of the algorithm for updating the
model parameters in Figure 6.7, where we compare the editing results and computational
times of learning without and with update. When we do not use the updating algorithm,
model parameters are learned from scratch every time strokes are added or removed. As
can be seen in the figure, there is almost no difference between the two results, whereas the
computational times with update become about half of the others.
Training data size. Figure 6.8 shows the editing results and computational times of
learning with different amounts of training data. As shown in the figure, the results almost
converged when we used equal to or more than 10% of the training data on the strokes, and
computational times were linearly reduced according to the amount of the training data.
Although it is generally known that deep learning requires a large amount of training data,
in fact, a few hundreds of instances per one category are sufficient for learning models in
some image recognition tasks [87]. Given this fact and the experimental results, we can
confirm that our method works well with relatively little training data, and only a few types

76

of user strokes.
Superpixel-based estimation. Figure 6.9 shows the editing results and computational
times of estimating with different numbers of superpixels. In this example, the results are
visually indistinguishable even when the number of superpixels decreases to 1% of the total
image pixels. However, the computational times are significantly reduced according to the
number of superpixels. Only when the number of superpixels is 0.1% of the total image
pixels, the result starts deteriorating. This is because the superpixels become too large to
fit the object shape. On the other hand, computational times were almost unchanged when
less than 1% were used: of the total reported time, 4 seconds are due to the post-processing,
which can be accelerated by using more efficient solvers.

6.4.2 Comparison with previous methods
To verify the effectiveness of our feature extraction method, we compare our method with
the handcrafted feature-based methods.

Compared features

We prepared the following image features used in previous work.

• color feature: three (or one)-dimensional RGB (or grayscale) vectors c.

• spatial feature: two-dimensional pixel coordinate vectors s.

• patch feature: 243 (or 81)-dimensional vectors p of 9 × 9 RGB (or grayscale)
patches.

• texture feature: 40-dimensional vectors t obtained by applying the Gabor filter [21,
14].

• dense SIFT feature: 128-dimensional vectors d that are scale-invariant feature trans-
form (SIFT) features [57] on each pixel.

For the texture features, we selected the parameters of the Gabor filter, i.e., kernel size,
wavelength of the sinusoidal factor, spatial aspect ratio, phase offset, standard deviation
of the gaussian envelope, and kernel orientation as 30 × 30, π, 1, π/2, {1, 2, 3, 4, 5}, and
{0, π/8, 2π/8, 3π/8, 4π/8, 5π/8, 6π/8, 7π/8}, respectively, and consequently 40-dimensional
vectors were obtained. We concatenated these features and used x = [σcc

T , σss
T , σpp

T , σtt
T , σdd

T]T

in the comparisons with previous methods. The experiments were conducted by adjusting
the importance of each feature σc, σs, σp, σt, and σd. As mentioned above, the proposed
method uses x = [pT , sT]T as input feature and we do not manually adjust the importance
of them.

77

Results

The state-of-the-art for edit propagation is the sparse control model (SCM) [94] except for
methods that focus on acceleration and memory efficiency. Given that comparisons with
other edit propagation methods have been conducted in the SCM paper [94], and the fact
that we focused mainly on feature extraction, we only compare our method to SCM (de-
noted as [XYJ13] in the following figures) and instant propagation (IP) [53] (denoted as
[LJH10] in the following figures), which is closely related to SCM, using our own imple-
mentations.
Colorization and recoloring. Figure 6.10 shows comparisons of image recoloring and
colorization between our method (DNN) and the previous methods with different param-
eters. The color of each pixel is computed as the probability-weighted average of the ab
channels of each stroke in Lab color space using the probability maps obtained by our
DNN. The colorized results are then post-processed. The parameters are shown at the
bottom of the figure and correspond to results in each column. First, the result of our
DNN obviously outperformed the leftmost results, which were obtained via the previous
methods but using the same features as ours, i.e., patch and spatial features. Second, the
use of all features in the previous methods tends to deteriorate the estimated results due
to the over-fitting. Third, it is difficult to handle some images even if individual features
are selectively used. In contrast to these results, our method can generate better results
than the previous methods overall. This means that, from low-level patch and coordinate
features, our method extracted stroke-adapted high-level features that are effective for edit
propagation, without manual feature selection.
Foreground segmentation. We compared results of foreground segmentation using 50
images randomly selected from MSRA 1k dataset [1]. We quantitatively evaluate the meth-
ods via a precision-recall (PR) curve, which is often used for saliency detection [85]. While
precision indicates the ratio of ground-truth pixels among pixels estimated as foreground,
recall indicates the ratio of pixels estimated as foreground among all the ground-truth pix-
els. To extract foreground regions, we segmented probability maps using a threshold. PR
curves were plotted with precision and recall obtained using different thresholds. We spec-
ified foreground and background manually using strokes on each image and used the same
strokes for all of the methods with the fixed feature parameters that were used in several of
the results of [53], i.e., σc = 1/0.2 = 5 and σs = 1. As summarized in the PR curve in Fig-
ure 6.11 and Table 6.3, our method overall outperforms the existing methods. Figure 6.12
also shows some results that are difficult for the existing methods to segment with only
color information, that is, when the foreground and background colors are very similar. Al-
though we tried to increase the importance of the texture features in the existing methods,
over-fitting problems occurred and results degenerated in some cases. While the results of
the existing methods might be improved if the feature parameters are tuned intensively, our
method can generate relatively good results without this process.

As shown in Figures 6.1 and 6.10, the two existing methods propagate image edits based

78

Table 6.3: Macro average precision, recall, and F1 ± standard deviation for binarization
of probability maps using a threshold (50%) on the 50 images. Results marked with ’*’
show statistically significant differences between our method and the others as measured
by paired t-test.

Method Precision Recall F1
[53] 0.905 ± 0.113 0.900 ± 0.168 0.885 ± 0.145
[94] 0.900±0.131 0.892 ± 0.115 0.887 ± 0.099
Our DNN 0.945 ± 0.060* 0.940 ± 0.065 0.940 ± 0.048**

∗ : p < 0.05, ∗∗ : p < 0.01

on different points of view. That is, IP estimates stroke probabilities smoothly, whereas
SCM estimates them discriminatively. As explained in [94], SCM is based on iterative fea-
ture discrimination and associates each pixel with only a part of the control samples. For
example, SCM can clearly propagate different image edits to neighbor objects that have
similar color by discriminating the spatial features, even if the importance of these features
is somewhat small. However, it is difficult to take advantage of this method unless appro-
priate features are selected and the importance of them is appropriately determined. Our
focus is to address this problem, which was demonstrated in this section. It is an inter-
esting avenue for future work to integrate deep features into the existing edit propagation
methods.

6.4.3 User study
We also conducted a user study to validate whether users can generate plausible results
using our system in as few attempts as possible. We recruited eight users, six novice and
two experienced users in image processing. The four images used in this study were Fig-
ures 6.1, 6.2, and 6.10 top and upper center. For each image, we showed sample results to
the users and asked them to conduct the following tasks using our system and SCM [94],
allowing them up to three trials until they are satisfied:

• Task 1 (Fig. 6.2): recolor groups of flower petals at different locations with the same
colors.

• Task 2 (Fig. 6.10 upper center): recolor each type of cookies.

• Task 3 (Fig. 6.10 top): recolor only the peels of the pear.

• Task 4 (Fig. 6.1): colorize each object such as leaves, woods, and a cat.

Before conducting these tasks, we briefly explained how to use the systems and the image
features to the users, and they practiced for about five minutes using other images such as

79

Figure 6.6 top. Because the users might get used to editing the same image from the second
time, we divided the users into two groups and shuffled the orders of images and methods
for each group. For SCM, we limited the appropriate ranges of the feature weights from
zero to five in order to avoid eccentric feature weights. The number of trials were recorded,
and the resulting images were evaluated by another 11 evaluators using a subjective score
ranging from one to five, as summarized in Figure 6.13. Thanks to the tuning-free charac-
teristic of our system, the number of trials for the editing was typically around two, which
was less than that of SCM. Additionally, the quality of resultant images using our system
consistently outperforms that of the existing method.

6.5 Discussion and Future Work
In the context of the proposed method, it is possible to consider two other approaches: (1)
data-driven pre-training and (2) network expansion.

As for (1), in several applications for computer vision, DNNs are pre-trained using
datasets containing a large number of general images such as ImageNet [22] before training
on data for specific tasks [51, 56]. This improves the generalization ability of models and
accuracy on the tasks. In contrast, our method does not use such data-driven approaches.
Nevertheless, it successfully generates several image editing results. It is not clear that
data-driven pre-training would improve the task handled in our task because learned fea-
tures strongly depend on the variously defined user strokes. Additionally, applying such
pre-trained models to our task is not straightforward because existing pre-trained models
are designed for image-level classification, but our task is pixel-level classification. For ex-
ample, Network in Network (NIN) [54] and AlexNet [43] require a relatively-large image
as input, that is, an image of 227 × 227 pixels in order to classify the image as ”scenery”,
”objects”, or ”animals”, etc. On the other hand, our task needs to classify individual pixels
in a single image, and thus we used relatively-small 9 × 9 image patches as input. If we
were to disregard this essential difference and still integrate a pre-trained model into our
framework, a naı̈ve way would be to simply replace our VFE with a pre-trained model.
We conducted such an experiment with NIN, which is a lightweight pre-trained model
using ImageNet and whose performance is sometimes slightly better than AlexNet in im-
age classification tasks. Specifically, we used NIN without its classification layer, which
outputs 1000-dimensional feature vectors from input images, and fixed its model parame-
ters during a learning session in order to leverage pre-trained features. Because NIN (and
also AlexNet) requires images of 227 × 227 pixels, we magnified 9 × 9 input patches to
227× 227 patches and fed these large patches to NIN. As clearly shown in Figure 6.14, the
NIN model cannot appropriately capture visual features. Even worse, this approach took a
significantly longer time (five minutes on average) despite the fact that the NIN model is
lightweight one, as this network has a too deep structure for our task. Because such data-
driven approaches are out of the scope of our research question, we consider such problems

80

as future work.
As for (2), it is interesting to use more wide-scale networks, and we tried to use DNNs

with deeper layers and larger kernels. However, there were no significant changes in results
while the computational time increased when we used images with up to 2M pixels in
our experiments. If we use larger images, a network that automatically changes its scale
according to image sizes could possibly improve editing results.

81

Input image and
user strokes

7.1 sec. 7.1 sec.

37.0 sec. 19.8 sec.

5.9 sec. 2.5 sec.

add stroke

remove strokes

w/o update w/ update

Figure 6.7: Comparison of colorization results without (w/o) and with (w/) updating pa-
rameters. The caption under each result shows computational time of learning.

82

1%, 12.3 sec. 5%, 55.5 sec.

10%, 78.3 sec. 20%, 228.8 sec.

Figure 6.8: Results with training data of different ratio. The input image and user strokes
are the same as Figure 6.1. The caption under each image shows the percentage of samples
of training data (left) and computational time of learning (right).

83

100%, 26.5 sec. 10%, 12.0 sec.

2%, 6.2 sec. 1%, 4.8 sec. 0.1%, 4.1 sec.

Input image & user strokes

Figure 6.9: Results with different number of superpixels. The caption under each image
shows the percentage of the number of superpixels to that of the original image pixels (left)
and computational time of estimation and post-processing (right).

84

= 1,

= 0, = 0)

[L
JH

1
0
]

O
u
r

D
N

N
In

p
u

t
im

ag
e

&
 u

se
r

st
ro

k
es

= 1,

= 1, = 1)

= 0,

= 0, = 0)

= 0,

= 0, = 0)

= 0,

= 1, = 1)

O
u
r

D
N

N
In

p
u

t
im

ag
e

&
 u

se
r

st
ro

k
es

O
u
r

D
N

N
In

p
u

t
im

ag
e

&
 u

se
r

st
ro

k
es

[L
JH

1
0

]
[L

JH
1

0
]

[X
Y

J1
3

]

O
u
r

D
N

N
In

p
u

t
im

ag
e

&
 u

se
r

st
ro

k
es

[L
JH

1
0
]

[X
Y

J1
3

]
[X

Y
J1

3
]

[X
Y

J1
3

]

Figure 6.10: Comparisons of color image recoloring and grayscale image colorization. For
the existing methods [53] [94] (denoted as [LJH10] and [XYJ13], the feature parameters
used in each column are shown in the bottom.

85

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
is
io
n

[LJH10]
[XYJ13]
Our DNN

(a) (b)

Figure 6.11: (a) Micro average PR curve that shows comparisons of foreground segmen-
tation using 50 images randomly selected from MSRA 1k dataset [1]. (b) Magnified PR
curve.

Input image and

user strokes
Ground truth Our DNN[LJH10] [XYJ13]

Figure 6.12: Comparisons of several results of foreground segmentation selected from
MSRA 1k dataset [1]. Each segmented result is visualized by binarizing a probability
map using a threshold (50%).

86

(a) Quality (b) Number of trial and error

*: p < 0.05, **: p < 0.01, ***: p < 0.001

0

1

2

3

4

5

Task 1 Task 2 Task 3 Task 4

E
v

a
lu

a
ti

o
n

 s
c
o

r
e

Our DNN [XYJ13]
*** ** ***

0

1

2

3

Task 1 Task 2 Task 3 Task 4

#
 o

f
tr

ia
l

a
n

d
 e

r
r
o

r
**** *

Figure 6.13: Results of user study. Error bars show the standard deviation, and results
marked with ’*’ show statistically significant differences as measured by paired t-test.

87

Figure 6.14: Results with NIN model instead of our VFE. The same input image and user
strokes are used for each image in Figures 6.1, 6.2, 6.10 top and upper center.

88

Chapter 7

Conclusion and Future work

In this thesis, we focused on the goal of establishing efficient framework that can repro-
duce realistic real-world appearance variations on 2D images. To achieve this, we proposed
weathering and reflection models for images. Our methods enabled users to more easily
generate realistic phenomena on images than not only existing methods and but also gen-
eral image editing softwares. As a pre-processing in our framework, we also provided an
efficient method of edit propagation for the ROI extraction. Additionally, we applied our
edit propagation method to other image editing such as colorization. We verified effective-
ness of our methods in the extensive experiments including the various applications and
user studies.

7.1 Summary of Contributions
We summarize the contributions of this thesis as follows:

• Reproduction of weathering effects: We have proposed an interactive system that
helps users design water flow stains on outdoor images. Based on a particle simula-
tion modified from Dorsey et al.’s model, our system allows the user to specify the
initial and terminal positions of particles by drawing a few control lines. Addition-
ally, the user can adjust the simulation to the perspective in the input image by using
a control mesh. Regarding the simulation scheme, we reduced the parameters used
in Dorsey et al.’s model to improve the usability, and ignored the interaction between
particles to accelerate simulations. Our system automatically estimates the bumpi-
ness of the surface where particle flows, using the luminance variations in the input
image. A user test demonstrated that our system yields better results more quickly
than a generic paint tool in the task of synthesizing water flow stains.

Additionally, we have presented a technique for reproducing weathering effects tak-
ing into account the geometric details caused by weathering. Because our method

89

can reproduce geometric variations caused by weathering effects by assuming that
they are high-frequency patterns, our method cannot handle weathering effects not
extracted as high-frequency patterns. Nevertheless, we have demonstrated that our
approach can achieve more realistic results through various results. Moreover, we
have introduced a user interface for editing weathering effects with a brush tool. Us-
ing the brush tool, the user could edit weathering effects while considering where
weathering tends to proceed.

• Reproduction of surface reflection: We have presented a method for matting and
compositing reflection in images. Our system allows the user to easily edit reflection
through only a few user interactions. Based on our assumptions, our matting algo-
rithm solves the reflection matting problem that is difficult to handle with existing
image matting techniques. Despite the simplification by our assumptions, we have
demonstrated results with visually-plausible composited reflection.

• ROIs extraction for efficient image editing: We have proposed DeepProp, which
achieves various image edits from only simple user strokes using deep leaning. As for
our research question, we conclude that, without manual feature selection, effective
features for edit propagation can be automatically extracted by (i) deep learning from
sparse user inputs in a single image and (ii) efficiently learning the DNN in order to
avoid falling into undesirable local solutions due to the vanishing gradient problem.
Our edit propagation system using deep features has generated better results than
previous work in several applications such as grayscale image colorization, image
recoloring, and foreground segmentation.

7.2 Future Work
We state our future work for each chapter and our long-term view.

• Reproduction of weathering effects: Future work for Chapter 3 is to shorten the
computational time for simulation. If input images are large, the simulation param-
eter of the particle size should be increased. This fact increases the computational
time and reduce the usability of the system. We believe that parallel computation on
GPU is effective. Another future work is to improve our simulation scheme, which
simulates the particle movements using the displacement map based on the variations
of intensity between neighbor pixels. Luminance artifacts (e.g., specular highlights,
shadows) in the input image might affect the simulation, which will be avoided by
removing such artifacts [32] or by manually editing the displacement map.

As we described in Chapter 4, in the deweathering process, our approach cannot
restore object shapes if they are inherently complicated. For future work, we would
like to develop a better deweathering technique that can restore the shapes of objects.

90

The data-driven approach that utilizes other images containing unweathered objects
may be effective for solving this problem.

• Reproduction of surface reflection: In Chapter 5, our work is the first attempt
of matting for complicated reflection, and we believe it has opened a new avenue
of research topics; handling of more complicated (e.g., curved) reflection surfaces,
geometries of real objects, and separation of a transmission component with surfaces
of shallow water such as a pond, river or pool, where complicated patterns of bottoms
will be seen.

• Efficient ROIs extraction: As for future work based on Chapter 6, the data-driven
approaches may be effective for learning DNNs as we mentioned before. Besides,
more acceleration is needed for interactive editing. Most of the modules in our sys-
tem can be accelerated using parallel computation on GPU. To this end, the GPU-
based SLIC algorithm for generating superpixels was proposed [70], linear solvers
for the post-processing was also accelerated [39], and learning and estimation algo-
rithms for DNNs were parallelized [46]. The chainer library we used makes GPU
implementation easy, and thus we tried to use GPU acceleration for deep learning
with our method. The algorithm on PC with NVIDIA GeForce GTX 760 was about
five times faster than CPU implementation. For high resolution images, our system
may provide instant feedback with a low resolution result as a preview during editing
sessions. We would like to accelerate our system for more interactive editing in the
future.

Finally, we envision our long-term goal. The proposed methods in this thesis are mainly
based on two approaches, that is, theoretical approach and data-driven approach. Although
the former approach makes steady progress, there are still many challenges for various ap-
pearance variations. The latter approach holds the promise of applications to wide range
of problems but it requires enormous data. Recently, we can easily obtain a large amount
image and video data through the Internet. Additionally, using crowd sourcing, we may
be able to collect data of image editing operations, and can more deeply understand users’
intent during editing session. By analyzing these data and using machine learning ap-
proaches, we believe that we can create more intelligent and user-friendly systems that
synthesize more realistic and diverse effects.

91

References

[1] Achanta, R., Hemami, S.S., Estrada, F.J., Susstrunk, S.: Frequency-tuned salient re-
gion detection. In: CVPR, pp. 1597–1604. IEEE Computer Society (2009)

[2] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC super-
pixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal.
Mach. Intell. 34(11), pp. 2274–2282 (2012). DOI 10.1109/TPAMI.2012.120. URL
http://dx.doi.org/10.1109/TPAMI.2012.120

[3] An, X., Pellacini, F.: AppProp: All-pairs appearance-space edit propagation. In:
ACM SIGGRAPH ’08, pp. 40:1–40:9 (2008). DOI 10.1145/1399504.1360639. URL
http://doi.acm.org/10.1145/1399504.1360639

[4] Ashikhmin, M.: Synthesizing natural textures. In: Proceedings of the
2001 Symposium on Interactive 3D Graphics, I3D ’01, pp. 217–226.
ACM, New York, NY, USA (2001). DOI 10.1145/364338.364405. URL
http://doi.acm.org/10.1145/364338.364405

[5] Bandeira, D., Walter, M.: Synthesis and transfer of time-variant material appearance
on images. In: 2009 XXII Brazilian Symposium on Computer Graphics and Image
Processing, pp. 32–39 (2009). DOI 10.1109/SIBGRAPI.2009.38

[6] Bandeira, D., Walter, M.: Highlights on weathering effects. The Visual Com-
puter 26(6), pp. 965–974 (2010). DOI 10.1007/s00371-010-0495-1. URL
http://dx.doi.org/10.1007/s00371-010-0495-1

[7] Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach.
Learn. 2(1), pp. 1–127 (2009). DOI 10.1561/2200000006. URL
http://dx.doi.org/10.1561/2200000006

[8] Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., Montreal, U.D., Quebec, M.:
Greedy layer-wise training of deep networks. In: In NIPS. MIT Press, pp. 153–160
(2007)

[9] Bie, X., Huang, H., Wang, W.: Real time edit propagation by efficient sampling.
Comput. Graph. Forum 30(7), pp. 2041–2048 (2011)

92

[10] Bousseau, A., Paris, S., Durand, F.: User-assisted intrinsic images. In: ACM SIG-
GRAPH Asia ’09, pp. 130:1–130:10 (2009). DOI 10.1145/1661412.1618476. URL
http://doi.acm.org/10.1145/1661412.1618476

[11] Bousseau, A., Paris, S., Durand, F.: User-assisted intrinsic images. In:
ACM SIGGRAPH Asia 2009 Papers, SIGGRAPH Asia ’09, pp. 130:1–130:10.
ACM, New York, NY, USA (2009). DOI 10.1145/1661412.1618476. URL
http://doi.acm.org/10.1145/1661412.1618476

[12] Boyadzhiev, I., Bala, K., Paris, S., and Adelson, E.: Band-shifting decomposition for
image-based material editing, ACM Trans. Graph, 34, 5, 163:1-164:16, 2015.

[13] Bronstein, A.M., Bronstein, M.M., Zibulevsky, M., Zeevi, Y.Y.: Sparse ICA
for blind separation of transmitted and reflected images. International Jour-
nal of Imaging Systems and Technology 15(1), pp. 84–91 (2005). URL
http://dx.doi.org/10.1002/ima.20042

[14] Chen, X., Zou, D., Li, J., Cao, X., Zhao, Q., Zhang, H.: Sparse dictionary learning for
edit propagation of high-resolution images. In: CVPR 2014, pp. 2854–2861 (2014).
DOI 10.1109/CVPR.2014.365. URL http://dx.doi.org/10.1109/CVPR.2014.365

[15] Chen, X., Zou, D., Zhao, Q., Tan, P.: Manifold preserving edit propagation. ACM
Trans. Graph. 31(6), pp. 132:1–132:7 (2012). DOI 10.1145/2366145.2366151. URL
http://doi.acm.org/10.1145/2366145.2366151

[16] Cho, H., Lee, H., Kang, H., Lee, S.: Bilateral texture filtering. ACM Trans.
Graph. 33(4), pp. 128:1–128:8 (2014). DOI 10.1145/2601097.2601188. URL
http://doi.acm.org/10.1145/2601097.2601188

[17] Chuang, Y.Y., Goldman, D.B., Curless, B., Salesin, D.H., Szeliski, R.: Shadow mat-
ting and compositing. ACM Trans. Graph. 22(3), pp. 494–500 (2003)

[18] Chuang, Y.Y., Goldman, D.B., Zheng, K.C., Curless, B., Salesin, D.H., Szeliski, R.:
Animating pictures with stochastic motion textures. In: ACM SIGGRAPH 2005
Papers, SIGGRAPH ’05, pp. 853–860 (2005)

[19] Chuang, Y.Y., Zongker, D.E., Hindorff, J., Curless, B., Salesin, D.H., Szeliski, R.:
Environment matting extensions: Towards higher accuracy and real-time capture. In:
Siggraph 2000, Computer Graphics Proceedings, pp. 121–130, (2000)

[20] Criminisi, A., Sharp, T., Rother, C., P’erez, P.: Geodesic image and video
editing. ACM Trans. Graph. 29(5), pp. 134:1–134:15 (2010). DOI
10.1145/1857907.1857910. URL http://doi.acm.org/10.1145/1857907.1857910

93

[21] Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and
orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A
2(7), pp. 1160–1169 (1985). URL http://josaa.osa.org/abstract.cfm?URI=josaa-2-7-
1160

[22] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale
Hierarchical Image Database. In: CVPR ’09 (2009)

[23] Deng, L., Li, J., Huang, J., Yao, K., Yu, D., Seide, F., Seltzer, M.L.,
Zweig, G., He, X., Williams, J., Gong, Y., Acero, A.: Recent advances
in deep learning for speech research at microsoft. In: IEEE ICASSP
’13, pp. 8604–8608 (2013). DOI 10.1109/ICASSP.2013.6639345. URL
http://dx.doi.org/10.1109/ICASSP.2013.6639345

[24] Desbenoit, B., Galin, E., Akkouche, S.: Simulating and modeling lichen growth.
Computer Graphics Forum 23(3), pp. 341–350 (2004). DOI 10.1111/j.1467-
8659.2004.00765.x. URL http://dx.doi.org/10.1111/j.1467-8659.2004.00765.x

[25] Dorsey, J., Edelman, A., Jensen, H.W., Legakis, J., Pedersen, H.K.: Modeling and
rendering of weathered stone. In: ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05,
pp. 225–234, ACM, New York, NY, USA (2005). DOI 10.1145/1198555.1198697.
URL http://doi.acm.org/10.1145/1198555.1198697

[26] Dorsey, J., Hanrahan, P.: Modeling and rendering of metallic patinas.
In: ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05, pp. 387–396, ACM,
New York, NY, USA (2005). DOI 10.1145/1198555.1198695. URL
http://doi.acm.org/10.1145/1198555.1198695

[27] Dorsey, J., Pedersen, H.K., Hanrahan, P.: Flow and changes in appearance. In: Pro-
ceedings of the 23rd Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’96, pp. 411–420. ACM, New York, NY, USA (1996). DOI
10.1145/237170.237280. URL http://doi.acm.org/10.1145/237170.237280

[28] Eisenacher, C., Lefebvre, S., Stamminger, M.: Texture Synthesis From Photographs,
Computer Graphics Forum, 27, 2, pp.419-428, April 2008.

[29] Fang, H., Hart, J.C.: Textureshop: Texture synthesis as a photograph editing tool.
ACM Trans. Graph. 23(3), pp. 354–359 (2004). DOI 10.1145/1015706.1015728.
URL http://doi.acm.org/10.1145/1015706.1015728

[30] Farbman, Z., Fattal, R., Lischinski, D.: Diffusion maps for edge-aware im-
age editing. ACM Trans. Graph. 29(6), pp. 145:1–145:10 (2010). DOI
10.1145/1882261.1866171. URL http://doi.acm.org/10.1145/1882261.1866171

94

[31] Fattal, R.: Single image dehazing. In: ACM SIGGRAPH 2008 papers, SIGGRAPH
’08, pp. 72:1–72:9 (2008)

[32] Finlayson, Graham D. and Hordley, Steven D. and Drew, Mark S.: Removing Shad-
ows from Images. In: ECCV ’02, pp. 823–836 (2002)

[33] Gai, K., Shi, Z.W., Zhang, C.S.: Blindly separating mixtures of mul-
tiple layers with spatial shifts. In: CVPR, pp. 1–8 (2008). URL
http://dx.doi.org/10.1109/CVPR.2008.4587343

[34] Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: G.J.
Gordon, D.B. Dunson (eds.) AISTATS ’11, vol. 15, pp. 315–323 (2011). URL
http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf

[35] Gu, J., Tu, C.I., Ramamoorthi, R., Belhumeur, P., Matusik, W., Nayar,
S.: Time-varying surface appearance: Acquisition, modeling and render-
ing. In: ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06, pp. 762–771.
ACM, New York, NY, USA (2006). DOI 10.1145/1179352.1141952. URL
http://doi.acm.org/10.1145/1179352.1141952

[36] He, K.M., Sun, J., Tang, X.: Single image haze removal us-
ing dark channel prior. In: CVPR, pp. 1956–1963 (2009). URL
http://dx.doi.org/10.1109/CVPRW.2009.5206515

[37] Hirota, K., Tanoue, Y., Kaneko, T.: Simulation of three-dimensional cracks. The
Visual Computer 16(7), pp. 371–378 (2000). DOI 10.1007/s003710000069. URL
http://dx.doi.org/10.1007/s003710000069

[38] Hsu, S.c., Wong, T.t.: Simulating dust accumulation. IEEE Comput.
Graph. Appl. 15(1), pp. 18–22 (1995). DOI 10.1109/38.364957. URL
http://dx.doi.org/10.1109/38.364957

[39] Jost, T., Contassot-Vivier, S., Vialle, S.: An efficient multi-algorithms sparse linear
solver for GPUs. In: ParCo2009. Lyon, France (2009). URL https://hal.inria.fr/inria-
00430520

[40] Khan, E.A., Reinhard, E., Fleming, R., Buelthoff, H.: Image-based material edit-
ing. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 25(3) pp. 654–663
(2006)

[41] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014). URL http://arxiv.org/abs/1412.6980

95

[42] Kratz, L., Nishino, K.: Factorizing scene albedo and depth from a sin-
gle foggy image. In: ICCV, pp. 1701–1708. IEEE (2009). URL
http://dx.doi.org/10.1109/ICCV.2009.5459382

[43] Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems 25, pp. pp. 1097–1105 (2012). URL http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf

[44] Lane, N.D., Georgiev, P., Qendro, L.: DeepEar: Robust smartphone au-
dio sensing in unconstrained acoustic environments using deep learning. In:
UbiComp ’15, pp. 283–294 (2015). DOI 10.1145/2750858.2804262. URL
http://doi.acm.org/10.1145/2750858.2804262

[45] Lang, M., Wang, O., Aydin, T., Smolic, A., Gross, M.: Practical tempo-
ral consistency for image-based graphics applications. ACM Trans. Graph.
31(4), pp. 34:1–34:8 (2012). DOI 10.1145/2185520.2185530. URL
http://doi.acm.org/10.1145/2185520.2185530

[46] Le, Q.V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Ng, A.Y.: On optimization
methods for deep learning. In: ICML, pp. 265–272 (2011)

[47] Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM
Trans. Graph. 23(3), pp. 689–694 (2004). DOI 10.1145/1015706.1015780. URL
http://doi.acm.org/10.1145/1015706.1015780

[48] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral matting. In: CVPR. IEEE Com-
puter Society (2007)

[49] Levin, A., Weiss, Y.: User assisted separation of reflections from a single image using
a sparsity prior. IEEE Trans. Pattern Analysis and Machine Intelligence 29(9), pp.
1647–1654 (2007). URL http://dx.doi.org/10.1109/TPAMI.2007.1106

[50] Levin, A., Zomet, A., Weiss, Y.: Separating reflections from a single im-
age using local features. In: CVPR (1), pp. 306–313 (2004). URL
http://doi.ieeecomputersociety.org/10.1109/CVPR.2004.226

[51] Li, G., Yu, Y.: Visual saliency based on multiscale deep features. In: CVPR 2015
(2015)

[52] Li, Y., Adelson, E., Agarwala, A.: Scribbleboost: Adding classification to
edge-aware interpolation of local image and video adjustments. In: EGSR
’08, pp. 1255–1264 (2008). DOI 10.1111/j.1467-8659.2008.01264.x. URL
http://dx.doi.org/10.1111/j.1467-8659.2008.01264.x

96

[53] Li, Y., Ju, T., Hu, S.M.: Instant propagation of sparse edits on images and videos.
Comput. Graph. Forum 29(7), pp. 2049–2054 (2010)

[54] Lin, M., Chen, Q., Yan, S.: Network in network. CoRR abs/1312.4400 (2013). URL
http://arxiv.org/abs/1312.4400

[55] Lischinski, D., Farbman, Z., Uyttendaele, M., Szeliski, R.: Interactive local ad-
justment of tonal values. ACM Trans. Graph. 25(3), pp. 646–653 (2006). DOI
10.1145/1141911.1141936. URL http://doi.acm.org/10.1145/1141911.1141936

[56] Liu, F., Shen, C., Lin, G.: Deep convolutional neural fields for depth estimation from
a single image. In: CVPR 2015 (2015)

[57] Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV ’99,
pp. 1150–1157 (1999). URL http://dl.acm.org/citation.cfm?id=850924.851523

[58] Luan, Q., Wen, F., Cohen-Or, D., Liang, L., Xu, Y.Q., Shum, H.Y.: Natural image
colorization. In: EGSR ’07, pp. 309–320 (2007)

[59] Mérillou, S., Ghazanfarpour, D.: Technical section: A survey of aging and weathering
phenomena in computer graphics. Comput. Graph. 32(2), pp. 159–174 (2008). DOI
10.1016/j.cag.2008.01.003. URL http://dx.doi.org/10.1016/j.cag.2008.01.003

[60] Motoyoshi, I., Nishida, S., Sharan, L. and Adelson, E.H.: Image statistics and the
perception of surface qualities, Nature, May 10; 447(7141): 2006-2009, 2007.

[61] Musialski, P., Cui, M., Ye, J., Razdan, A., Wonka, P.: A framework for interactive im-
age color editing. Vis. Comput. 29(11), pp. 1173–1186 (2013). DOI 10.1007/s00371-
012-0761-5. URL http://dx.doi.org/10.1007/s00371-012-0761-5

[62] Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learn-
ing. In: ICML, pp. 689–696 (2011)

[63] Paquette, E., Poulin, P., Drettakis, G.: The simulation of paint cracking and peeling,
Proceedings of Graphics Interface 2002, pp. 59–68, Calgary, Alberta, Canada, 27 - 29
May 2002

[64] Park, J., Heo, N., Choi, S., Shin, S.Y.: Tour into the picture with water surface re-
flection and object movements: Research articles. Comput. Animat. Virtual Worlds
17(3-4), pp. 315–324 (2006)

[65] Peers, P., Dutre, P.: Wavelet environment matting. In: Proceedings of the 14th Euro-
graphics Workshop on Rendering, pp. pp. 157–166 (2003)

97

[66] Pellacini, F., Lawrence, J.: AppWand: Editing measured materials using
appearance-driven optimization. ACM Trans. Graph. 26(3) (2007). DOI
10.1145/1276377.1276444. URL http://doi.acm.org/10.1145/1276377.1276444

[67] Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Transactions on
Graphics 22(3), pp. 313–318 (2003)

[68] Qu, Y., Wong, T.T., Heng, P.A.: Manga colorization. ACM Trans. Graph. 25(3), pp.
1214–1220 (2006)

[69] Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color transfer between images.
IEEE Computer Graphics and Applications 21(5), pp. 34–41 (2001)

[70] Ren, C.Y., Reid, I.: gslic: a real-time implementation of slic superpixel segmentation.
Tech. rep., University of Oxford, Department of Engineering Science (2011)

[71] Rhemann, C., Rother, C., Wang, J., Gelautz, M., Kohli, P., Rott, P.: A perceptually
motivated online benchmark for image matting. In: CVPR 2009 (2009)

[72] Rhemann, C., Rother, C., Wang, J., Gelautz, M., Kohli, P., Rott, P.: A perceptually
motivated online benchmark for image matting. In: CVPR ’09, pp. 1826–1833 (2009)

[73] Sawayama, M. and Nishida, S. (2015). Visual perception of surface wetness. Vision
Sciences Society 2015, St. Pete Beach, Florida, USA, May 15-20, 2015.

[74] Schlick, C.: An inexpensive BRDF model for physically-based rendering. Computer
Graphics Forum 13(3), pp. 233–246 (1994)

[75] Shen, L., Tan, P., Lin, S.: Intrinsic image decomposition with non-local texture cues.
In: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference
on, pp. 1–7 (2008). 00044

[76] Shen, W., Wang, X., Wang, Y., Bai, X., Zhang, Z.: Deepcontour: A deep convolu-
tional feature learned by positive-sharing loss for contour detection. In: CVPR ’15
(2015)

[77] Shih, Yichang and Paris, Sylvain and Durand, Frédo and Freeman, William T.: Data-
driven Hallucination of Different Times of Day from a Single Outdoor Photo. ACM
Trans. Graph., 32, 6, pp. 200:1–200:11 (2013).

[78] Subr, K., Soler, C., Durand, F.: Edge-preserving multiscale image decomposi-
tion based on local extrema. In: ACM SIGGRAPH Asia 2009 Papers, SIG-
GRAPH Asia ’09, pp. pp. 147:1–147:9. ACM, New York, NY, USA (2009). DOI
10.1145/1661412.1618493. URL http://doi.acm.org/10.1145/1661412.1618493

98

[79] Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for
non-uniform motion blur removal. In: CVPR ’15 (2015)

[80] Tan, R.T.: Visibility in bad weather from a single image. In: CVPR, pp. 1–8 (2008).
URL http://dx.doi.org/10.1109/CVPR.2008.4587643

[81] Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV, pp.
839–846 (1998)

[82] Wang, J., Cohen, M.F.: Optimized color sampling for robust matting. In: CVPR, pp.
1–8 (2007). URL http://dx.doi.org/10.1109/CVPR.2007.383006

[83] Wang, J., Cohen, M.F.: Image and video matting: a survey. In: Foundations and
Trends in Computer Graphics and Vision, vol. 3 pp. 97–175 (2008)

[84] Wang, J., Tong, X., Lin, S., Pan, M., Wang, C., Bao, H., Guo, B., Shum,
H.Y.: Appearance manifolds for modeling time-variant appearance of mate-
rials. In: ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06, pp. 754–761.
ACM, New York, NY, USA (2006). DOI 10.1145/1179352.1141951. URL
http://doi.acm.org/10.1145/1179352.1141951

[85] Wang, L., Lu, H., Ruan, X., Yang, M.H.: Deep networks for saliency detection via
local estimation and global search. In: CVPR ’15 (2015)

[86] Wexler, Y., Fitzgibbon, A., Zisserman, A.: Image-based environment matting.
In: Proceedings of the 13th Eurographics Workshop on Rendering (RENDERING
TECHNIQUES-02), pp. 279–290 (2002)

[87] Wu, J., Yu, Y., Huang, C., Yu, K.: Deep multiple instance learning for image classifi-
cation and auto-annotation. In: CVPR 2015 (2015)

[88] Wu, T.P., Tang, C.K., Brown, M.S., Shum, H.Y.: Natural shadow matting. ACM
Trans. Graph 26(2) (2007). URL http://doi.acm.org/10.1145/1243980.1243982

[89] Wu, Z., Jiang, Y.G., Wang, J., Pu, J., Xue, X.: Exploring inter-feature and
inter-class relationships with deep neural networks for video classification. In:
ACM MM ’14, pp. 167–176 (2014). DOI 10.1145/2647868.2654931. URL
http://doi.acm.org/10.1145/2647868.2654931

[90] Xiao, T., Xu, Y., Yang, K., Zhang, J., Peng, Y., Zhang, Z.: The application of two-
level attention models in deep convolutional neural network for fine-grained image
classification. In: CVPR ’15 (2015)

99

[91] Xu, K., Li, Y., Ju, T., Hu, S.M., Liu, T.Q.: Efficient affinity-based edit
propagation using k-d tree. In: ACM SIGGRAPH Asia ’09, pp. 118:1–
118:6. New York, NY, USA (2009). DOI 10.1145/1661412.1618464. URL
http://doi.acm.org/10.1145/1661412.1618464

[92] Xu, K., Wang, J., Tong, X., Hu, S.M., Guo, B.: Edit propagation on bidirectional
texture functions. Computer Graphics Forum 28(7), pp. 1871–1877 (2009)

[93] Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via l0 gradient minimization. ACM
Trans. Graph. 30(6), pp. 174:1–174:12 (2011). DOI 10.1145/2070781.2024208. URL
http://doi.acm.org/10.1145/2070781.2024208

[94] Xu, L., Yan, Q., Jia, J.: A sparse control model for image and video editing. ACM
Trans. Graph. 32(6), pp. 197:1–197:10 (2013). DOI 10.1145/2508363.2508404. URL
http://doi.acm.org/10.1145/2508363.2508404

[95] Xuey, S., Wang, J., Tong, X., Dai, Q., Guo, B.: Image-based material weather-
ing. Computer Graphics Forum 27(2), pp. 617–626 (2008). DOI 10.1111/j.1467-
8659.2008.01159.x. URL http://dx.doi.org/10.1111/j.1467-8659.2008.01159.x

[96] Yan, Z., Zhang, H., Wang, B., Paris, S., Yu, Y.: Automatic photo adjustment using
deep neural networks. ACM Trans. Graph. 35(2) (2015)

[97] Yatagawa, T., Yamaguchi, Y.: Sparse pixel sampling for appearance edit propagation.
The Visual Computer 31(6-8), pp. 1101–1111 (2015)

[98] Yatziv, L., Sapiro, G.: Fast image and video colorization using chrominance blending.
IEEE Transactions on Image Processing 15(5), pp. 1120–1129 (2006)

[99] Yeung, S.K., Tang, C.K., Brown, M.S., Kang, S.B.: Matting and compositing of
transparent and refractive objects. ACM Transactions on Graphics 30(1), pp. 2:1–
2:13 (2011). DOI http://dx.doi.org/10.1145/1899404.1899406

[100] Yin, X., Fujimoto, T., Chiba, N.: Cg representation of wood aging with distortion,
cracking and erosion. The Journal of the Society for Art and Science 3(4), pp. 216–
223 (2004). DOI 10.3756/artsci.3.216

[101] Zelinka, S., Fang, H., Garland, M., Hart, J.C.: Interactive material replace-
ment in photographs. In: Proceedings of Graphics Interface 2005, GI ’05, pp.
227–232. Canadian Human-Computer Communications Society, School of Com-
puter Science, University of Waterloo, Waterloo, Ontario, Canada (2005). URL
http://dl.acm.org/citation.cfm?id=1089508.1089546

100

[102] Zongker, D.E., Werner, D.M., Curless, B., Salesin, D.: Environment mat-
ting and compositing. In: SIGGRAPH, pp. 205–214 (1999). URL
http://doi.acm.org/10.1145/311535.311558

101

