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Abstract

This paper presents a method that can convert a given 3D mesh into a flat-foldable model consisting of rigid panels. A previous
work proposed a method to assist manual design of a single component of such flat-foldable model, consisting of vertically-
connected side panels as well as horizontal top and bottom panels. Our method semi-automatically generates a more compli-
cated model that approximates the input mesh with multiple convex components. The user specifies the folding direction of each
convex component and the fidelity of shape approximation. Given the user inputs, our method optimizes shapes and positions of
panels of each convex component in order to make the whole model flat-foldable. The user can check a folding animation of the
output model. We demonstrate the effectiveness of our method by fabricating physical paper prototypes of flat-foldable models.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry and Object

Modeling—Physically based modeling

1. Introduction

Folding objects flatly is an effective way to conserve storage
space. For example, packing materials such as card-board boxes
or gift boxes are devised to be flat-foldable and have their shapes
restored easily. In the field of origami engineering, folding mech-
anisms have been extensively studied and used to develop vari-
ous products that require contractility and portability, from pop-up
cards to solar panels of satellites.

Although previous folding techniques are used in various fields,
they can handle only relatively simple shapes such as symmet-
ric ones. Additionally, complicatedly-shaped objects consisting of
rigid materials are more difficult to fold than objects made of soft
materials such as cloth or rubber. Also, the more complicated the
shape is, the more difficult it is to fold and restore its shape.

To tackle this challenge, Kase et al. proposed a system to assist
manual design of flat-foldable polygonal models [KKM15]. Fig-
ure 1 shows an example model designed by their system, which is
defined by the shapes of the top panel and cross-section polylines
specified by the user. The cross-section polylines define the side
panels that are vertically connected each other and also connected
to the top and bottom panels. We can fold the model flat by push-
ing down the top panel because horizontally-adjacent side panels
are not connected and vertically-connected side panels are articu-
lated at each horizontal edge that works as a hinge.

Unfortunately, their system has several problems. First, because
their system is basically for manual design, the user must undergo
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Figure 1: Flat-foldable component by Kase et al. [KKM15].

many trial-and-errors to design a desired shape. Second, the design-
ing process is not intuitive because the user specifies the shapes
of the top panel and cross-section polylines in 2D space, making
it hard to imagine the resultant shape of the whole model. Third,
although they suggested that a complicated model can be created
by designing and attaching multiple flat-foldable components each
other, the user must account for which faces to be attached while
adjusting the shapes and positions of faces and avoiding collisions
during folding.

In this paper, we propose a semi-automatic method for creat-
ing a multi-component, flat-foldable model that roughly approx-
imates an input 3D mesh with rigid panels. Our method first di-
vides the input mesh into multiple components and, in order to
simplify the shape optimization process, converts them into con-
vex shapes. After the user specifies the folding direction of each
convex component and fidelity parameters for shape approxima-
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tion (e.g., the number of vertices in the top panel), our method cal-
culates a flat-foldable shape for each component through optimiza-
tion, while accounting for faces of inter-component attachment as
well as collisions between horizontally-adjacent side panels in each
component. The user can check a folding animation of the resultant
model. To demonstrate the effectiveness of our method, we fabri-
cate physical paper prototypes of flat-foldable models generated by
our system.

2. Related Work

Techniques for folding objects flat have been used in various
fields. A research topic familiar for the computer graphics com-
munity is to design pop-up cards or books, which are paper art-
works that are flat while closed and show their 3D shape when
opened [MS04, XTGH11,IEM*11,JLYL14]. The target objects of
these study form their shape when being expanded 90 or 180 de-
grees, whereas each flat-foldable component stands up after being
pulled perpendicularly to the top panel in our method. Additionally,
we can make a complex object by combining multiple objects that
are folded in different directions.

In the field of origami engineering, there are a number of tech-
niques for designing flat-foldable shapes. Particularly, those for
rigid-foldable shapes are the most relevant to our work. A rigid-
foldable shape consists of rigid faces and mountain/valley crease
lines, and the rigid faces remain rigid during folding, similarly to
the rigid panels in our flat-foldable models. However, existing stud-
ies focus on how to fold simple primitives, e.g., cylindrical or cellu-
lar structures [TM12, YYT*13], unlike our work that handles gen-
eral polygonal models using slits and multiple components.

For other foldable products, Li et al. presented a method for au-
tomatically generating foldable furniture [LHAZ15]. Koo et al. de-
veloped an interactive system to aid the design of work-alike
prototypes of products to explore possible mechanical architec-
ture [SSCOO8]. They optimize model geometry on the basis of a
functional relationship given by the user. While these studies focus
on avoiding intersections of each component of an object to design
foldable models, we focus on generating foldable objects that can
be flattened out.

3. Configuration of Flat-Foldable Component

Before explaining our method, we briefly review the baseline
method by Kase et al. [KKM15] to make this paper self-contained.
After introducing the basic definitions, we explain their method and
then describe our modification.

3.1. Basic Definitions of Flat-Foldable Component

As shown in Figure 1, a flat-foldable component is specified
with a horizontal top panel as well as cross-section polylines. Each
cross-section polyline is assigned to each top-panel edge; the cross-
section polylines are as many as the top-panel edges. We can gen-
erate a vertical chain of side panels by extruding each cross-section
polyline infinitely in parallel to the corresponding top-panel edge,
followed by trimming with horizontally-adjacent side panels. The
side panels are folded outward during folding. The top panel is a
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Figure 2: Basic definitions of a flat-foldable component.

planar polygon perpendicular to the folding direction. To avoid col-
lisions of horizontally-adjacent side panels, the top panel must be
convex [KKM15]. The bottom panel is parallel to the top panel, and
automatically determined as a result of trimming with side panels.

Figure 2 summarizes the basic definitions. Suppose there are N
edges on the top panel. For each top-panel edge E; (j=0,1,...,N—
1), we consider cross section I1; of the flat-foldable component, and
then define cross-section polyline P; on plane IT;. Polyline P; con-
sists of vertices pl{ (i=0,1,...,M;—1), where M; is the number of

vertices in polyline P;. Each vertex plj corresponds to a horizontal
edge connecting vertically-adjacent side panels. Polyline P; is fur-
ther examined in uv plane defined on cross section IT;. We denote

p] = (u,v!) in uv plane. pj and p'lle_l contact the top and bottom
panels, respectively. p(j) must move only along v axis, pfuj_l is fixed

on u axis during folding. Hereafter we might omit subscript j for
simplicity.

3.2. Baseline Method by Kase et al.

Kase et al. [KKM15] examined the conditions that each polyline
must satisfy to generate a flat-foldable component (see Figure 3):

u; > uj, (1)

€= (up-1—u0)= Y. 5il; ~ 0, 6)

where u; and u; correspond to u coordinates of p; before and after
folding. /; i=0,1,2,,---,M —2) is the length of a segment S; con-
necting p; and p;41. € represents the gap between u coordinates of
the two endpoints in the flat-folded state. If gap € of the polyline is
sufficiently close to zero, the polyline is considered as flat-foldable.
o; becomes 1 if §; faces upward (i.e., the outward normal of a side
panel corresponding to segment S; is oriented upward), and -1 if
downward. Each vertex has a folded or non-folded state, and the
folded state has two folding configurations, i.e., mountain fold or
valley fold. That is, the total number of possible folded configura-
tions is 2M~1. To obtain a good folded configuration, their system
ranks each folded configuration using a score function, and selects
the one with the best score. The system then optimizes the vertex
positions in the selected configuration in order to make the polyline
flat-foldable.

They also suggested to combine multiple flat-foldable compo-
nents to create a more complicated model. Note that we must care-
fully select components’ faces to be attached in order to avoid col-
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Figure 4: Folding of a cross-section polyline with our convexity
constraint. The gap € (middle) in the folded state is minimized via
optimization (right).

lisions during folding. Figure 5 illustrates an example. As their sys-
tem allows concave shapes, component B in Figure 5 has a concave
component (with segments in green) where we cannot attach other
components to avoid collisions.

3.3. Convexity Constraint in Our Method

Unlike the manual design in their system, we determine the
whole shape of a flat-foldable component as automatically as pos-
sible while satisfying flat-foldability and shape fidelity. In order to
make the problem tractable, we introduce a novel constraint that
each polyline should have no valley fold and only one mountain
fold in the flat-folded state, which ensures the resultant component
has a convex shape. The only vertex having a mountain fold will
move outermost in the flat-folded state, and we call it the convex
fold vertex (see Figure 4, right). This constraint simplifies the prob-
lem:

1. All unconstrained vertices in each polyline always move out-
ward in u direction and thus Eq. (1) is always satisfied. What we
have to consider for flat-foldability is only Eq. (2).

2. When attaching multiple components, we do not have to con-
sider concave components (Figure 5), unlike the manual design
using the system by Kase et al.

3. The number of possible folding configurations is greatly re-
duced from 2~ to M -2 (note that we cannot assign a moun-
tain fold to pg or pa/—1)-

This convex constraint also makes the manual folding process eas-
ier; if we allow a concave component and push it down vertically,
concave side panels will move inward and collide with adjacent
side panels. To avoid such collisions, we have to manually pull out
each concave side panel outward during the folding. This is much
more troublesome in case of multiple concave components.
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Figure 5: 2D illustration of component attachment. The green seg-
ments in component B indicate a concave component where other
components cannot be attached to avoid collisions.

4. Proposed Method

Figure 6 illustrates the overview of our method, which involves
the following five steps. Namely, our method

1. Divides an input 3D mesh model into multiple components and
converts them into convex shapes (Section 4.1),

2. Generates a top panel and optimizes its size and position for
each component (Section 4.2),

3. Generates cross-section polylines and adjusts the number and
positions of vertices of each polyline so that each polyline be-
comes foldable (Section 4.3),

4. Generates a 3D polygonal model from the top panel and cross-
section polylines and then modifies the cross-section polylines
again as needed (Section 4.4), and

5. Connects foldable components with one another.

Our method generates a flat-foldable model automatically, except
for the user-specified folding directions and parameters for shape
approximation fidelity.

4.1. Segmenting Mesh and Calculating Convex Components

To approximate an input 3D mesh with multiple flat-foldable
components, we apply the feature-preserving mesh segmentation
algorithm by Shapira et al. [SSCOO08]. The top panel of each com-
ponent must be convex (Section 3.1), and the cross-section poly-
lines should not have valley folds causing inward move (Sec-
tion 3.3), which makes the whole component shape convex. We
therefore replace each segmented mesh with its convex hull calcu-
lated using [BDH96].

4.1.1. Determining folding direction

An important step to generate each flat-foldable component is to
specify its folding direction, which determines fundamental factors
of shape design. First, the folding direction specifies the top panel
so that the top panel becomes perpendicular to the folding direc-
tion. The top panel then determines not only top-panel edges but
also corresponding cross-section polylines, for which we have to
minimize gaps in Eq. (2).

The shape of the top panel also affects inter-component attach-
ment. Figure 7 illustrates the influence of the folding direction of a
flat-foldable component, showing two resultant models with differ-
ent folding directions specified for the teddy bear’s face. The model
in the upper row is created using the folding direction of the verti-
cal direction from up to down. This folding direction specifies the
topmost face as the top panel, and the ears are attached flatly. On
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Figure 6: Overview of our method. We first (1) segment an input 3D mesh and replace each mesh segment with its convex hull, which will be
converted into a flat-foldable component. We then generate and optimize (2) a top panel and (3) cross-section polylines for each component.
Next, we (4) generate a flat-foldable component from the top panel and cross-section polylines and then modify the polylines again as needed.
Finally, we (5) combine flat-foldable components and output a foldable model.
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Figure 7: Influence of the folding direction of a flat-foldable com-
ponent. The different folding directions (white arrows outlined in
blue) yield different shapes of flat-foldable models.
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Figure 8: Folding direction with a larger top panel (right) yields
smaller spread after folding than that with a smaller top panel
(right), resulting in less collisions during folding.

the other hand, the other model in the lower row is created using
the folding direction from back to front. In this case, the top panel
is not visible in front view, but the bottom panel is visible as the flat
polygon. Note that the ears are attached in different orientations.

As a criteria to determine the folding direction of each compo-
nent, we consider the fact that a folding direction with a larger top
panel yield smaller spread in the flat-folded state (Figure 8), which
is beneficial to less collisions with other components during fold-
ing. We thus let the user specify a folding direction perpendicular
to the first principle direction of the component shape.

Top panels

Figure 9: Trimming B’s top panel to ensure a side panel parallel
to the connecting plane 1l4p for attaching component A.

4.2. Generating Top Panel

Given the user-specified folding direction, we first generate the
initial shape of the top panel, and then optimize its size and posi-
tion. The initial shape of the top panel is generated as follows. Our
method

1. Projects vertices of the convex component to a plane perpendic-
ular to folding direction and convert them to points in 2D space,

. Generates a 2D convex hull from the 2D points, and

. Reduces vertices (and resp. edges) of the polygon up to the user-
specified number, N,

For the edge reduction in step 3, we use the algorithm by Dyken et
al. [DDS09].

4.2.1. Trimming top panel for attachment

When designing the top panel, we trim the top-panel polygon to
generate side panels for attaching other flat-foldable components.
Figure 9 illustrates an example. Let A and B be mesh segments and
[14p be a plane fitted using least-squares to vertices located at their
interface. To attach A to B, B should have a side panel parallel to
plane IT4 . Such side panel is defined by its cross-section polyline,
and such polyline is specified by the corresponding top-panel edge.
We therefore generate a top-panel edge parallel to plane I14p by
trimming the top panel. If one of B’s top-panel edges is almost
parallel to plane I145, we do not trim B’s top panel but use such top-
panel edge (and the corresponding side panel) of B. After ensuring
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Figure 10: Simplified model for optimizing the top panel. Poly-
gons Ao, A1, and Ay are of the same shape as the initial top panel,
and contain pé, p{, and pé of cross-section polylines, respectively.
Scales s¢, s1, and s> as well as other parameters are optimized to
obtain the polygon model shown in upper right.

B’s side panel for attaching A, we simply rotate and translate A to
attach A onto B.

Note that the attached bottom panel of A might be too
larger/smaller than B’s side panel. In that case, the user re-designs
the shapes by tuning the shape fidelity parameters (see Section 5.1).

4.2.2. Optimizing top panel

To optimize the size and position of the top panel, we also have
to consider how well the corresponding cross-section polylines
(i.e., centerlines of side panels) approximate the initial component
shape. We simplify this problem by separating the optimizations
for the top panel and cross-section polylines; here we optimize
only the top panel with quite simplified cross-section polylines that
roughly approximate the component shape, and later, with the fixed
top panel, optimize cross-section polylines (Section 4.3).

Figure 10 illustrates the simplified model for optimizing the top
panel. In this model, each cross-section polyline has only three ver-
tices and two edges, and vertex plf = (u{ ,vl! ) (i=0,1,2) in each
cross-section polyline P; has the same v coordinate. Let Ag, A1,
and A, be polygons that are parallel copies of the initial top panel
and contain pé, p{ , and pé, respectively.

To roughly approximate the initial component shape with this
simplified model, we optimize the following eight parameters.

1. Scales so, s, and s, for each u-coordinates u}), uj, and u} (3
parameters).

2. v coordinates v{), v{ , and vé (3 parameters).

3. x,y coordinates of the centroid of the simplified model (2 pa-
rameters).

Note that we omit the z coordinate of the centroid because the
height is already considered with the v coordinates.

Let V() be the set of vertices in the initial component shape, and
V be the set of vertices of the simplified model. We optimize the
eight parameters by minimize the following energy function:

E= indist(ag,b) + in dist(by, 3
Z},‘E“VI; ist(as,b) bEZVBgEqu ist(by,a) 3)

aceVy
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Figure 11: Generating an initial polyline by connecting intersec-
tions (red) of the convex hull with cross section I1; corresponding
to the top-panel edge E; (left). To attach another component, we
insert an edge into the polyline (right), which is parallel to the com-
ponent’s panel to be attached.

s.t. v(j) >v{ > v% “4)
0<s; <1, Q)]
Hpin < Vé, Vé < Hpax. (6)

Eq. (3) is the sum of the shortest distances between the initial com-
ponent shape and the simplified model, approximating the exclu-
sive OR of their volumes. Constraint (4) is to arrange vertices con-
sistently in v direction. The condition 0 < s; in constraint (5) pre-
vents inversion in the simplified model. The condition s; < 1 is to
shrink polygon A; from its initial size; polygon A; initially has the
same shape as the top panel and is expected to shrink. Constraint (6)
is to keep the height of the simplified model within the specified
range, where H,;, and H,,,, denote the lower and upper bounds of
the heights of the top and bottom panels along the folding direction.
Note that foldability of cross-section polylines is omitted in this op-
timization because here we focus on appropriate size and position
of the top panel. We consider the foldability of cross-section poly-
lines in the next subsection.

4.3. Generating Cross-section Polylines

Given the top panel optimized in the previous subsection, we ob-
tain initial cross-section polylines as follows. For each cross section
I1; passing through the midpoint of top-panel edge E ;, we calculate
intersection points of edges on the convex component, and use them
as the initial set of vertices of polyline P; (Figure 11, left). Because
we seek for convex components, vertices in the initial polylines are
removed if they do not contribute to convex hulls.

Additionally, we also have to consider inter-component attach-
ments, similar to the discussion in Section 4.2.1. To attach a compo-
nent, we need a side panel that is parallel to the target component’s
panel to be attached. We thus insert a line segment that defines such
side panel to the cross-section polyline P;. Specifically, we project
the vertices of the attaching panel onto cross section I1;, and insert
a segment covering the projected vertices (Figure 11, right). Note
that, if there are no projected vertices within the range of the top
and bottom panels, we do not insert a line segment, e.g., in the case
that the attaching panel is parallel to the top panel.

4.3.1. Optimizing polylines independently

This section describes how to optimize each cross-section poly-
lines to be foldable independently, without considering other poly-
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Figure 12: Optimization of a cross-section polyline. p; (i =0,1,2,--- , M —1) and Py (i =0,1,2,--- ,k— 1) are vertices before and after
simplification. (1) We remove vertices of the polyline until the number of vertices becomes k (3 < k < k"**). We then (2) adjust the position
of the convex-fold vertex and select the polyline with the smallest gap €, and (3) adjust the positions of all vertices. If k < K™, we return to

Step (3).

lines. The basic procedure is to generate candidate polylines by
simplification and optimization, and to select a simplified polyline
that has the smallest gap € among the candidates. The details are
illustrated in Figure 12 and explained as follows.

1. We generate candidate polylines by simplifying the initial poly-
line P; with different numbers of vertices. Let k be the number
of vertices in a simplified polyline f”;. Note that pg and pys—1
are fixed, and vertices belonging to the line segment parallel to
the connecting plane are only allowed to move in parallel to the
plane. We iterate the following steps from k = 3 to k = k™4,
where k" is the maximum number of vertices specified by the
user.

2. For each simplified polyline PX, we pick each vertex pj (h =
1,2,---,k—2) as a candidate of] a convex-fold vertex, optimize
P*, and then examine the gap e. Here we optimize the uv coordi-
nates of only pj, using Eq. (7) with a constraint vj,1 <vj, <vj_1
to avoid vertical flip. We then determine p;, with the smallest
gap € as the convex-fold vertex of simplified polyline f”}‘..

3. For each simplified polyline f’lj‘. with different k, we optimize

the whole shape of f”; using Eq. (7) with the constraint (11) and
examine the gap €. Again, pg, py—1 and vertices belonging to
the line segment parallel to the connecting plane are constrained
as Step 1. Finally, we select f”; with the smallest gap € as the
output of this procedure. '

To simplify a polyline in Step 1, we used the Douglas-Peucker
algorithm with a slight modification; we reduce vertices until the
number of points becomes less than the specified number. The pur-
pose of adjusting only one convex fold vertex in Step 2 is to choose
more appropriate folding configuration before optimization of all
vertices, and to suppress the influence of the change of the shape as
much as possible in only the convex fold vertex.

We define an energy function by considering foldability and fi-
delity of the simplified cross-section polyline to the initial polyline,
and adjust positions (i.e., # and v coordinates) of vertices by mini-

mizing the energy function as follows.
E=wsEs+wgEg +wcEe, @)

where E, Eg and E. are energy terms described hereafter, and wy,
wyg, and w, are the weights. We empirically choose ws = 0.7, wg =
1.0, and w. = 0.9.

Shape fidelity term. To prevent an adjusted polyline from differ-
ing from original shape during optimization, we add the following
term:

Es =dg({pi}.{br ), (8

where dy (A, B) denotes Hausdorft distance between points set A
and B, and p; (i =0,1,2,---,M—1) and py (I’ =0,1,2,--- ,k—1)
are the vertices before and after simplification.

Foldability term. We regard a cross-section polyline as flat-
foldable if its gap € is less than a tolerance 7. Similarly to the base-
line method [KKM15], we use 7 = 0.001 X I, where [ is the average
segment length of the cross-section polyline. To minimize gap e,
we add the following term:

-1 M-1
Eg:uM—l_MO_Zli+Zli» )
=0 i=h

where £ is an index of a convex fold vertex of the cross-section
polyline.

Convexity term. The cross-section polyline should be as convex
as possible so that it is flattened outward. To measure the convexity
of the line, we define a new term that is the sum of distance be-
tween an edge p;—1Pp;+1. If it equals zero, the shape of the polyline
is convex to outward. The new term is:

M=2 .

O 0.<

I N X
=1 dist(pi—1Pi+1,P;)  otherwise
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Figure 13: Angles 0; are calculated counterclockwise.

where dist(E,p) is the Euclidean distance between edge E and
point p. 6; is a counterclockwise angle between vectors P;+1 — P;
and p;_1 —P; (see Figure 13).

To avoid inconsistent ordering in the vertical direction, we min-
imize Eq. (7) with the following constraint:

Vigl <V <Vi_1. (11)

Note that there are cases where the gap € does not become less
than 7. Thus, we iterate optimization while decreasing w; and w3
until gap € becomes less than 7 because foldability is more impor-
tant than shape fidelity and convexity.

To solve this optimization problem, we use gradient descent with
numerical differentiation, starting from the initial shape that satis-
fies all the constraints. If we violate constraints during an iteration,
we halve the step size and re-evaluate the iteration. Particularly, if
we violate constraint (11) at vertex i, we replace v; with a value
slightly smaller than v;_;. To keep the direction of the line segment
parallel to the connecting plane, the vertices consisting of the line
segment are constrained to move only along that direction. This is
accomplished by parameterizing the endpoint with a scalar value
and a unit directional vector, and by optimizing the scalar value
instead of u, v coordinates of the endpoint.

In the results shown in Section 5, our optimization always con-
verged probably thanks to good initial shapes, and yielded flat-
foldable models mainly because we choose a flat-foldable configu-
ration among several candidates as in Step 2.

4.4. Optimizing Polylines While Avoiding Collisions with
Neighbors

In Section 4.3 we optimized each cross-section polyline sepa-
rately. However, the side panels may collide with each other de-
pending on shape of the adjacent cross-section polylines, and thus
we cannot generate foldable polygonal components sometimes.
Therefore, to generate a foldable polygonal model properly, this
section describes a method to modify the vertex positions of the
entire polylines by considering relationship of vertices of the adja-
cent cross-section polylines.

Here, we explain the collision of the side panels by using Fig-
ure 14. First, we define some symbols. Let c-{” in the Pjy1 is a

point that have same v-coordinate as p{ .

To explain the collision, we consider two lines; the one line L; 1
includes c’j 1 and is parallel to top-panel edge Ej., and the other

line Lj. includes p; and is parallel to top-panel edge E;. Letting m;

submitted to Pacific Graphics (2017)

Top panel Top panel

Figure 14: Top views of an invalid mesh (left) as well as top (mid-
dle) and oblique (right) views of a valid mesh.

be the midpoint of top-panel edge E;, we can define I; .1 as the

intersection of a line p;m ; and L; +1- This is shown in middle of
Figure 14.

The conditions under which collision occurs are described as:
lIp’; —mjll =12}, | —mjll >0, (12)
Ip’; — | = 177, —myl| >0, (13)

where, because I’l+l and I;_l are on the same line, the condition
under which collision does not occur is defined as:

1P, — mjll = min(I7%, , —myll, 175, —mjly <0 (14)

The absolute value of the left side of Eq. (14) is equal to
max(lllj‘n —p"}.l|, ||Ij.71 - p3||). Therefore, to generate foldable polyg-
onal components properly, we modify the polylines by minimizing
the energy function with an additional objective function:

N-1M-2
Ep=>" %" max(lf,, ~pill I, - piiD, (15)
j=0 i=1
and we update Eq. (7) to the following energy function:
E=wiEg+weEg+wcEc+wrEy, (16)

where we used the weights wy = 0.01, wg, = 1.0, w. = 0.01, and
wy = 1.0. We optimize Eq. (16) for each polyline until convergence.

5. Results

We implemented our algorithm using C++, and ran our program
on a PC with an Intel Core i7 and 8GB RAM. We used the CGAL
C++ library for segmenting an input 3D mesh model and convert-
ing segments into multiple convex components.

Figure 18 shows the foldable polygonal models generated by us-
ing our system, and Figure 19 shows the animation of folding these
models. Figure 20 shows the fabricated physical paper prototypes
from development planes. For physical assembly, we used tapes
and bond for attachment. These results demonstrate that our sys-
tem can convert input 3D models into foldable models, and the
converted models can be folded in the real world. Table 1 shows
the computation time. The segmentation includes a process of di-
viding and converting to multiple convex components. In addition,
the conversion of foldable model includes generation and optimiza-
tion of the top panel, generation and optimization of cross-section
polylines. According to Table 1, the segmentation takes longer time
when the number of vertices is larger. This is because it takes time
to convert to convex shape rather than segmentation. On the other
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\\i N LA After folding

1

Before folding

Folding process

Figure 15: Collision might occur if we fold multiple components
simultaneously (upper row) but we can usually avoid collision by
folding each component one by one (lower row).

hand, although the number of models and the number of vertices
affect calculation time, there is not much difference in calculation
time for each foldable component.

Some flat-foldable models require attention to avoid collisions
during folding. For example, when we fold the bunny’s head model
in Figure 15, the ears might collide with each other if we fold them
simultaneously (upper row). However, collisions do not occur if we
fold each ear one by one (lower row). In case that self-collision is
unavoidable (we did not experience this situation in our results; col-
lisions are usually avoidable as in Figure 15) or the resultant shape
is unfavorable, the user can re-design the model with additional in-
teractions, as described in the following subsection.

5.1. Influence of User Interactions

Our method is automatic except for the following user interac-
tions; the user specifies the folding direction of each flat-foldable
component (Section 4.1.1) and tunes the shape fidelity parameters,
i.e., N™" (Section 4.2) and K™~ (Section 4.3.1). As GUISs, the user
specifies the folding direction by rotating it around the principle
shape axis using the mouse wheel, and N and k"% using spin-
ners, respectively. The folding direction can be specified for each
component independently, as demonstrated in Figures 7 and 19 as
well as the accompanying video. If the user-specified folding direc-
tion is almost parallel to the current connecting plane (Figure 9), we
quit using the connecting plane and instead use the top or bottom
panels as a new connecting plane.

Shape fidelity can be controlled by changing N”#" and k™*. Ta-
ble 2 summarizes the Hausdorff distance as an error metric between
the resultant shape and the initial convex shape of each component
of Bunny. The Hausdorff distances are normalized by the diagonal
length of Bunny’s bounding box. With larger N”"* and k™%, the
Hausdorff distance decreases but the difficulty in flat folding in-
creases because of the more top-panel edges and more side-panel
hinges.

5.2. Comparison with Kase et al. [KKM15]

Figure 16 shows a comparison of our method and the method by
Kase et al. [KKM15] in terms of quality and time required for de-
sign. Our result (middle) was created semi-automatically from the

Figure 16: Comparison of our result (middle) created semi-
automatically from the input mesh (left) and a manually-created
model (right) using the method by Kase et al. [KKM15].

<O

Input Foldable

Figure 17: The hole in the input mesh (left) is lost in the flat-
foldable convex component (right).

input mesh (left) while their result (right) was manually designed
with a moderate effort to make the result resemble the original. The
time required for designing the models with several trial-and-errors
are about 20 minutes and 50 minutes, respectively. In general, while
the method by Kase et al. [KKM15] provides much greater degrees-
of-freedom in the designing process, our method yields plausible
results in a shorter time.

Our design restriction that each flat-foldable component should
have a convex shape (Section 3.3) affects the resultant shapes. For
example, geometric details such as Bunny’s eyes or ears are lost in
Figure 18. Even worse, if the target polygonal model has a hole, the
hole will be lost in its convex hull (Figure 17). This issue can be al-
leviated by increasing the number of segmented components, with
increased difficulty in the shape design and physical realization.

6. Conclusions and Future Work

We have proposed a system that converts input 3D shape into
foldable shape of polygonal models semi-automatically. The user
specifies folding direction of each divided convex component from
directions perpendicular to a first principle component of the ver-
tices of the convex component, and the minimum number of edges
of a top panel and the maximum number of cross-section polylines.
We demonstrated that our system can generate foldable polygonal
models.

As the most interesting future direction, we would like to loosen
the convex shape constraint for each component (Section 3.3) in or-
der to increase the shape approximation fidelity. Although allowing
concave components will increase the designing and folding labor,
the labor might be alleviated if we can actuate a foldable model
mechanically [KMM17].

submitted to Pacific Graphics (2017)
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Snowman Teapot Bunny Teddy Armadillo

Figure 18: Examples of input models and resultant flat-foldable models. Left column: Input models. Middle column: Convex hulls of seg-
mented meshes. Right column: Flat-foldable components.
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Figure 19: Example animation sequences of flat-foldable models.
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Table 1: Statistics of resultant flat-foldable models.

# of input faces Segmentation Conversion of Total time
(# of components) (sec) foldable model (sec) (sec)
Snowman 13,450 (6) 771 234 1,005
Teapot 6,543 (6) 148 193 341
Bunny 4,968 (5) 13 194 207
Teddy 3,192 (8) 27 174 201
Armadillo 17,296 (15) 63 449 512

Table 2: Approximation errors of Bunny’s components w.r.t. N™" and k™~

Hausdorff distance (# of vertices of top panel)

N fmax Leftear | Rightear Head Body Foot average
5 6 0.048 (5) | 0.038(5) | 0.056 (5) | 0.092(5) | 0.098 (5) 0.066
5 10 0.046 (5) | 0.034(5) | 0.063 (5) | 0.087 (5) | 0.097 (5) 0.065
8 6 0.049 (8) | 0.052(8) | 0.039 (8) | 0.093(8) | 0.081 (8) 0.063
5 3 0.044 (5) | 0.047 (5) | 0.062 (6) | 0.097 (5) | 0.101 (5) 0.070
4 6 0.051 (4) | 0.032(4) | 0.055(5) | 0.100(5) | 0.092 (4) 0.066

g

Figure 20: Examples of physical paper prototypes of flat-foldable
models.
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